Visatronic: A Multimodal Decoder-Only Model for Speech Synthesis
- URL: http://arxiv.org/abs/2411.17690v2
- Date: Thu, 29 May 2025 17:58:02 GMT
- Title: Visatronic: A Multimodal Decoder-Only Model for Speech Synthesis
- Authors: Akshita Gupta, Tatiana Likhomanenko, Karren Dai Yang, Richard He Bai, Zakaria Aldeneh, Navdeep Jaitly,
- Abstract summary: Video-Text to Speech (VTTS) is a speech generation task conditioned on both its corresponding text and video of talking people.<n>We introduce Visatronic, a unified multimodal decoder-only transformer model that embeds visual, textual, and speech inputs into a shared subspace.<n>We show that Visatronic achieves a 4.5% WER, outperforming prior SOTA methods trained only on LRS3.
- Score: 13.702423348269155
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The rapid progress of foundation models and large language models (LLMs) has fueled significantly improvement in the capabilities of machine learning systems that benefit from mutlimodal input data. However, existing multimodal models are predominantly built on top of pre-trained LLMs, which can limit accurate modeling of temporal dependencies across other modalities and thus limit the model's ability to jointly process and leverage multimodal inputs. To specifically investigate the alignment of text, video, and speech modalities in LLM-style (decoder-only) models, we consider a simplified multimodal generation task, Video-Text to Speech (VTTS): speech generation conditioned on both its corresponding text and video of talking people. The ultimate goal is to generate speech that not only follows the text but also aligns temporally with the video and is consistent with the facial expressions. In this paper, we first introduce Visatronic, a unified multimodal decoder-only transformer model that adopts an LLM-style architecture to embed visual, textual, and speech inputs into a shared subspace, treating all modalities as temporally aligned token streams. Next, we carefully explore different token mixing strategies to understand the best way to propagate information from the steps where video and text conditioning is input to the steps where the audio is generated. We extensively evaluate Visatronic on the challenging VoxCeleb2 dataset and demonstrate zero-shot generalization to LRS3, where Visatronic, trained on VoxCeleb2, achieves a 4.5% WER, outperforming prior SOTA methods trained only on LRS3, which report a 21.4% WER. Additionally, we propose a new objective metric, TimeSync, specifically designed to measure phoneme-level temporal alignment between generated and reference speech, further ensuring synchronization quality. Demo: https://apple.github.io/visatronic-demo/
Related papers
- TalkingMachines: Real-Time Audio-Driven FaceTime-Style Video via Autoregressive Diffusion Models [2.176487921193175]
TalkingMachines is an efficient framework that transforms pretrained video generation models into real-time, audio-driven character animators.<n>TalkingMachines enables natural conversational experiences by integrating an audio large language model (LLM) with our video generation foundation model.
arXiv Detail & Related papers (2025-06-03T17:29:28Z) - CosyVoice 2: Scalable Streaming Speech Synthesis with Large Language Models [74.80386066714229]
We present an improved streaming speech synthesis model, CosyVoice 2.<n>Specifically, we introduce finite-scalar quantization to improve codebook utilization of speech tokens.<n>We develop a chunk-aware causal flow matching model to support various synthesis scenarios.
arXiv Detail & Related papers (2024-12-13T12:59:39Z) - Mimir: Improving Video Diffusion Models for Precise Text Understanding [53.72393225042688]
Text serves as the key control signal in video generation due to its narrative nature.<n>The recent success of large language models (LLMs) showcases the power of decoder-only transformers.<n>This work addresses this challenge with Mimir, an end-to-end training framework featuring a carefully tailored token fuser.
arXiv Detail & Related papers (2024-12-04T07:26:44Z) - VQ-CTAP: Cross-Modal Fine-Grained Sequence Representation Learning for Speech Processing [81.32613443072441]
For tasks such as text-to-speech (TTS), voice conversion (VC), and automatic speech recognition (ASR), a cross-modal fine-grained (frame-level) sequence representation is desired.
We propose a method called Quantized Contrastive Token-Acoustic Pre-training (VQ-CTAP), which uses the cross-modal sequence transcoder to bring text and speech into a joint space.
arXiv Detail & Related papers (2024-08-11T12:24:23Z) - C3LLM: Conditional Multimodal Content Generation Using Large Language Models [66.11184017840688]
We introduce C3LLM, a novel framework combining three tasks of video-to-audio, audio-to-text, and text-to-audio together.
C3LLM adapts the Large Language Model (LLM) structure as a bridge for aligning different modalities.
Our method combines the previous tasks of audio understanding, video-to-audio generation, and text-to-audio generation together into one unified model.
arXiv Detail & Related papers (2024-05-25T09:10:12Z) - Towards Accurate Lip-to-Speech Synthesis in-the-Wild [31.289366690147556]
We introduce a novel approach to address the task of synthesizing speech from silent videos of any in-the-wild speaker solely based on lip movements.
The traditional approach of directly generating speech from lip videos faces the challenge of not being able to learn a robust language model from speech alone.
We propose incorporating noisy text supervision using a state-of-the-art lip-to-text network that instills language information into our model.
arXiv Detail & Related papers (2024-03-02T04:07:24Z) - Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
Video pre-training is challenging due to the modeling of its dynamics video.
In this paper, we address such limitations in video pre-training with an efficient video decomposition.
Our framework is both capable of comprehending and generating image and video content, as demonstrated by its performance across 13 multimodal benchmarks.
arXiv Detail & Related papers (2024-02-05T16:30:49Z) - Mirasol3B: A Multimodal Autoregressive model for time-aligned and contextual modalities [67.89368528234394]
One of the main challenges of multimodal learning is the need to combine heterogeneous modalities.
Video and audio are obtained at much higher rates than text and are roughly aligned in time.
Our approach achieves the state-of-the-art on well established multimodal benchmarks, outperforming much larger models.
arXiv Detail & Related papers (2023-11-09T19:15:12Z) - VioLA: Unified Codec Language Models for Speech Recognition, Synthesis,
and Translation [91.39949385661379]
VioLA is a single auto-regressive Transformer decoder-only network that unifies various cross-modal tasks involving speech and text.
We first convert all the speech utterances to discrete tokens using an offline neural encoder.
We further integrate task IDs (TID) and language IDs (LID) into the proposed model to enhance the modeling capability of handling different languages and tasks.
arXiv Detail & Related papers (2023-05-25T14:39:47Z) - VATLM: Visual-Audio-Text Pre-Training with Unified Masked Prediction for
Speech Representation Learning [119.49605266839053]
We propose a unified cross-modal representation learning framework VATLM (Visual-Audio-Text Language Model)
The proposed VATLM employs a unified backbone network to model the modality-independent information.
In order to integrate these three modalities into one shared semantic space, VATLM is optimized with a masked prediction task of unified tokens.
arXiv Detail & Related papers (2022-11-21T09:10:10Z) - Grafting Pre-trained Models for Multimodal Headline Generation [12.063053852096514]
Multimodal headline utilizes both video frames and transcripts to generate the natural language title of the videos.
Previous researches on pre-trained language models and video-language models have achieved significant progress in related downstream tasks.
We propose a novel approach to graft the video encoder from the pre-trained video-language model on the generative pre-trained language model.
arXiv Detail & Related papers (2022-11-14T08:59:59Z) - TVLT: Textless Vision-Language Transformer [89.31422264408002]
We present the Textless Vision-Language Transformer (TVLT), where homogeneous transformer blocks take raw visual and audio inputs.
TVLT attains performance comparable to its text-based counterpart, on various multimodal tasks.
Our findings suggest the possibility of learning compact and efficient visual-linguistic representations from low-level visual and audio signals.
arXiv Detail & Related papers (2022-09-28T15:08:03Z) - Lip-to-Speech Synthesis for Arbitrary Speakers in the Wild [44.92322575562816]
We propose a VAE-GAN architecture that learns to associate the lip and speech sequences amidst the variations.
Our generator learns to synthesize speech in any voice for the lip sequences of any person.
We conduct numerous ablation studies to analyze the effect of different modules of our architecture.
arXiv Detail & Related papers (2022-09-01T17:50:29Z) - WAVPROMPT: Towards Few-Shot Spoken Language Understanding with Frozen
Language Models [57.557319372969495]
Large-scale auto-regressive language models pretrained on massive text have demonstrated their impressive ability to perform new natural language tasks.
Recent studies further show that such a few-shot learning ability can be extended to the text-image setting by training an encoder to encode the images into embeddings.
We propose a novel speech understanding framework, WavPrompt, where we finetune a wav2vec model to generate a sequence of audio embeddings understood by the language model.
arXiv Detail & Related papers (2022-03-29T19:08:55Z) - All in One: Exploring Unified Video-Language Pre-training [44.22059872694995]
We introduce an end-to-end video-language model, namely textitall-in-one Transformer, that embeds raw video and textual signals into joint representations.
The code and pretrained model have been released in https://github.com/showlab/all-in-one.
arXiv Detail & Related papers (2022-03-14T17:06:30Z) - VX2TEXT: End-to-End Learning of Video-Based Text Generation From
Multimodal Inputs [103.99315770490163]
We present a framework for text generation from multimodal inputs consisting of video plus text, speech, or audio.
Experiments demonstrate that our approach based on a single architecture outperforms the state-of-the-art on three video-based text-generation tasks.
arXiv Detail & Related papers (2021-01-28T15:22:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.