TalkingMachines: Real-Time Audio-Driven FaceTime-Style Video via Autoregressive Diffusion Models
- URL: http://arxiv.org/abs/2506.03099v1
- Date: Tue, 03 Jun 2025 17:29:28 GMT
- Title: TalkingMachines: Real-Time Audio-Driven FaceTime-Style Video via Autoregressive Diffusion Models
- Authors: Chetwin Low, Weimin Wang,
- Abstract summary: TalkingMachines is an efficient framework that transforms pretrained video generation models into real-time, audio-driven character animators.<n>TalkingMachines enables natural conversational experiences by integrating an audio large language model (LLM) with our video generation foundation model.
- Score: 2.176487921193175
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we present TalkingMachines -- an efficient framework that transforms pretrained video generation models into real-time, audio-driven character animators. TalkingMachines enables natural conversational experiences by integrating an audio large language model (LLM) with our video generation foundation model. Our primary contributions include: (1) We adapt a pretrained SOTA image-to-video DiT into an audio-driven avatar generation model of 18 billion parameters; (2) We enable infinite video streaming without error accumulation through asymmetric knowledge distillation from a bidirectional teacher model into a sparse causal, autoregressive student model; (3) We design a high-throughput, low-latency inference pipeline incorporating several key engineering optimizations such as: (a) disaggregation of the DiT and VAE decoder across separate devices, (b) efficient overlap of inter-device communication and computation using CUDA streams, (c) elimination of redundant recomputations to maximize frame-generation throughput. Please see demo videos here - https://aaxwaz.github.io/TalkingMachines/
Related papers
- EasyGenNet: An Efficient Framework for Audio-Driven Gesture Video Generation Based on Diffusion Model [22.286624353800377]
We introduce a new audio-to-video pipeline to synthesize co-speech videos, using 2D human skeleton as the intermediate motion representation.<n>Our experiments show that our method outperforms existing GAN-based and diffusion-based methods.
arXiv Detail & Related papers (2025-04-11T08:19:18Z) - Visatronic: A Multimodal Decoder-Only Model for Speech Synthesis [13.702423348269155]
Video-Text to Speech (VTTS) is a speech generation task conditioned on both its corresponding text and video of talking people.<n>We introduce Visatronic, a unified multimodal decoder-only transformer model that embeds visual, textual, and speech inputs into a shared subspace.<n>We show that Visatronic achieves a 4.5% WER, outperforming prior SOTA methods trained only on LRS3.
arXiv Detail & Related papers (2024-11-26T18:57:29Z) - MotionAura: Generating High-Quality and Motion Consistent Videos using Discrete Diffusion [3.7270979204213446]
We present four key contributions to address the challenges of video processing.<n>First, we introduce the 3D Inverted Vector-Quantization Variencoenco Autocoder.<n>Second, we present MotionAura, a text-to-video generation framework.<n>Third, we propose a spectral transformer-based denoising network.<n>Fourth, we introduce a downstream task of Sketch Guided Videopainting.
arXiv Detail & Related papers (2024-10-10T07:07:56Z) - Pheme: Efficient and Conversational Speech Generation [52.34331755341856]
We introduce the Pheme model series that offers compact yet high-performing conversational TTS models.
It can be trained efficiently on smaller-scale conversational data, cutting data demands by more than 10x but still matching the quality of the autoregressive TTS models.
arXiv Detail & Related papers (2024-01-05T14:47:20Z) - Mirasol3B: A Multimodal Autoregressive model for time-aligned and contextual modalities [67.89368528234394]
One of the main challenges of multimodal learning is the need to combine heterogeneous modalities.
Video and audio are obtained at much higher rates than text and are roughly aligned in time.
Our approach achieves the state-of-the-art on well established multimodal benchmarks, outperforming much larger models.
arXiv Detail & Related papers (2023-11-09T19:15:12Z) - DAE-Talker: High Fidelity Speech-Driven Talking Face Generation with Diffusion Autoencoder [55.58582254514431]
We propose DAE-Talker to synthesize full video frames and produce natural head movements that align with the content of speech.<n>We also introduce pose modelling in speech2latent for pose controllability.<n>Our experiments show that DAE-Talker outperforms existing popular methods in lip-sync, video fidelity, and pose naturalness.
arXiv Detail & Related papers (2023-03-30T17:18:31Z) - MM-Diffusion: Learning Multi-Modal Diffusion Models for Joint Audio and
Video Generation [70.74377373885645]
We propose the first joint audio-video generation framework that brings engaging watching and listening experiences simultaneously.
MM-Diffusion consists of a sequential multi-modal U-Net for a joint denoising process by design.
Experiments show superior results in unconditional audio-video generation, and zero-shot conditional tasks.
arXiv Detail & Related papers (2022-12-19T14:11:52Z) - FastLTS: Non-Autoregressive End-to-End Unconstrained Lip-to-Speech
Synthesis [77.06890315052563]
We propose FastLTS, a non-autoregressive end-to-end model which can directly synthesize high-quality speech audios from unconstrained talking videos with low latency.
Experiments show that our model achieves $19.76times$ speedup for audio generation compared with the current autoregressive model on input sequences of 3 seconds.
arXiv Detail & Related papers (2022-07-08T10:10:39Z) - All in One: Exploring Unified Video-Language Pre-training [44.22059872694995]
We introduce an end-to-end video-language model, namely textitall-in-one Transformer, that embeds raw video and textual signals into joint representations.
The code and pretrained model have been released in https://github.com/showlab/all-in-one.
arXiv Detail & Related papers (2022-03-14T17:06:30Z) - End-to-End Video-To-Speech Synthesis using Generative Adversarial
Networks [54.43697805589634]
We propose a new end-to-end video-to-speech model based on Generative Adversarial Networks (GANs)
Our model consists of an encoder-decoder architecture that receives raw video as input and generates speech.
We show that this model is able to reconstruct speech with remarkable realism for constrained datasets such as GRID.
arXiv Detail & Related papers (2021-04-27T17:12:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.