論文の概要: Finding "Good Views" of Electrocardiogram Signals for Inferring Abnormalities in Cardiac Condition
- arxiv url: http://arxiv.org/abs/2411.17702v1
- Date: Mon, 11 Nov 2024 18:12:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-01 05:10:57.263170
- Title: Finding "Good Views" of Electrocardiogram Signals for Inferring Abnormalities in Cardiac Condition
- Title(参考訳): 心不全における心電図信号の「Good Views」の検索
- Authors: Hyewon Jeong, Suyeol Yun, Hammaad Adam,
- Abstract要約: 近年の研究では、深層学習アルゴリズムを用いてECG信号から不整脈を直接検出できることが確認されている。
不整脈を分類する下流タスクにおいて、正のサンプルを定義するためのいくつかの方法を検討し、どのアプローチが最高のパフォーマンスをもたらすかを評価する。
- 参考スコア(独自算出の注目度): 1.702954408126291
- License:
- Abstract: Electrocardiograms (ECGs) are an established technique to screen for abnormal cardiac signals. Recent work has established that it is possible to detect arrhythmia directly from the ECG signal using deep learning algorithms. While a few prior approaches with contrastive learning have been successful, the best way to define a positive sample remains an open question. In this project, we investigate several ways to define positive samples, and assess which approach yields the best performance in a downstream task of classifying arrhythmia. We explore spatiotemporal invariances, generic augmentations, demographic similarities, cardiac rhythms, and wave attributes of ECG as potential ways to match positive samples. We then evaluate each strategy with downstream task performance, and find that learned representations invariant to patient identity are powerful in arrhythmia detection. We made our code available in: https://github.com/mandiehyewon/goodviews_ecg.git
- Abstract(参考訳): 心電図(Electrocardiograms, ECGs)は、心臓の異常な信号をスクリーニングするための確立された手法である。
近年の研究では、深層学習アルゴリズムを用いてECG信号から不整脈を直接検出できることが確認されている。
対照的な学習に関するいくつかの以前のアプローチは成功したが、正のサンプルを定義する最良の方法は未解決の問題のままである。
本稿では,正のサンプルを定義するためのいくつかの方法について検討し,不整脈を分類する下流タスクにおいて,どのアプローチが最高のパフォーマンスをもたらすかを評価する。
本研究は, 心電図の時空間変動, 一般的な拡張, 人口統計学的類似性, 心臓リズム, および波動特性を, 正のサンプルと一致させる潜在的方法として検討する。
次に、下流タスクのパフォーマンスで各戦略を評価し、不整脈検出において患者同一性に不変な学習表現が強力であることを示す。
https://github.com/mandiehyewon/goodviews_ecg.git
関連論文リスト
- AnyECG: Foundational Models for Electrocardiogram Analysis [36.53693619144332]
心電図(ECG)は急性心臓発作の検出に非常に敏感である。
本稿では,実世界のECGデータからロバストな表現を抽出するための基礎モデルであるAnyECGを紹介する。
異常検出,不整脈検出,不良鉛生成,超長期心電図信号解析などの実験結果から,AnyECGがデータから共通心電図の知識を学習し,各タスクにおける最先端手法を著しく上回ることを示す。
論文 参考訳(メタデータ) (2024-11-17T17:32:58Z) - Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
そこで本研究では,周期型ECG表現学習手法を提案する。
心房細動患者の心電図ではRR間隔の不規則性やP波の欠如を考慮し, 経時的および経時的表現のための特定の事前訓練タスクを開発する。
本手法は,発作/持続性心房細動検出のためのBTCHデータセット,textiti., 0.953/0.996におけるAUCの顕著な性能を示す。
論文 参考訳(メタデータ) (2024-10-08T10:03:52Z) - Deciphering Heartbeat Signatures: A Vision Transformer Approach to Explainable Atrial Fibrillation Detection from ECG Signals [4.056982620027252]
単誘導心電図データに基づいて心房細動を識別するための視覚変換器アプローチを開発した。
また、残差ネットワーク(ResNet)アプローチも、視覚変換器アプローチと比較するために開発されている。
論文 参考訳(メタデータ) (2024-02-12T11:04:08Z) - Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
ノイズと品質の悪い録音は、モバイルヘルスシステムを使って収集された信号にとって大きな問題である。
近年の研究では、確率的時系列モデルによるECGの欠落値の計算が検討されている。
本稿では,様々な健康状態の事前情報として,テンプレート誘導型拡散確率モデル(DDPM)PulseDiffを提案する。
論文 参考訳(メタデータ) (2023-10-24T11:34:15Z) - ECG-SL: Electrocardiogram(ECG) Segment Learning, a deep learning method
for ECG signal [19.885905393439014]
本稿では,ECG信号の周期的性質をモデル化する新しいECG-Segment Based Learning (ECG-SL) フレームワークを提案する。
この構造的特徴に基づき, 時間的モデルを用いて, 各種臨床業務の時間的情報学習を行う。
提案手法はベースラインモデルより優れ,3つの臨床応用におけるタスク固有手法と比較して競争性能が向上する。
論文 参考訳(メタデータ) (2023-10-01T23:17:55Z) - Digital twinning of cardiac electrophysiology models from the surface
ECG: a geodesic backpropagation approach [39.36827689390718]
逆等角問題の解法としてGeodesic-BPを提案する。
その結果,Geodesic-BPは人工心臓の活性化を高精度に再現できることが示唆された。
パーソナライズド医療への将来のシフトを考えると、Geodesic-BPは将来の心臓モデルの機能化に役立つ可能性がある。
論文 参考訳(メタデータ) (2023-08-16T14:57:12Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
犬心電図(ECG)の評価には熟練した獣医が必要である。
心電図の解釈と診断支援のための獣医師の現在の利用状況は限られている。
犬の心電図配列を正常または異常と分類するためのディープ畳み込みニューラルネットワーク(CNN)アプローチを実装した。
論文 参考訳(メタデータ) (2023-05-17T09:06:39Z) - Two-stream Network for ECG Signal Classification [3.222802562733787]
本稿では,心電図に基づく心拍数型の自動分類アルゴリズムを提案する。
本稿では,2ストリームアーキテクチャを用いて,これに基づくECG認識の強化版を提案する。
MIT-BIH Arrhythmia Databaseの結果、提案アルゴリズムは99.38%の精度で実行されている。
論文 参考訳(メタデータ) (2022-10-05T08:14:51Z) - A lightweight hybrid CNN-LSTM model for ECG-based arrhythmia detection [0.0]
本稿では,8種類の心不整脈と正常リズムの高精度検出のための光深度学習手法を提案する。
各種心電図信号を用いた不整脈分類モデルの試作と試験を行った。
論文 参考訳(メタデータ) (2022-08-29T05:01:04Z) - ECG-Based Heart Arrhythmia Diagnosis Through Attentional Convolutional
Neural Networks [9.410102957429705]
本稿では,意図に基づく畳み込みニューラルネットワーク(ABCNN)を用いて生の心電図信号に対処し,正確な不整脈検出のための情報的依存関係を自動的に抽出する手法を提案する。
我々の主な課題は、正常な心拍から不整脈を見つけ、その間に5種類の不整脈から心疾患を正確に認識することである。
実験の結果,提案するABCNNは広く使用されているベースラインよりも優れていた。
論文 参考訳(メタデータ) (2021-08-18T14:55:46Z) - Noise-Resilient Automatic Interpretation of Holter ECG Recordings [67.59562181136491]
本稿では,ホルター記録を雑音に頑健に解析する3段階プロセスを提案する。
第1段階は、心拍位置を検出する勾配デコーダアーキテクチャを備えたセグメンテーションニューラルネットワーク(NN)である。
第2段階は、心拍を幅または幅に分類する分類NNである。
第3のステージは、NN機能の上に、患者対応機能を組み込んだ強化決定木(GBDT)である。
論文 参考訳(メタデータ) (2020-11-17T16:15:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。