PROGRESSOR: A Perceptually Guided Reward Estimator with Self-Supervised Online Refinement
- URL: http://arxiv.org/abs/2411.17764v1
- Date: Tue, 26 Nov 2024 04:17:51 GMT
- Title: PROGRESSOR: A Perceptually Guided Reward Estimator with Self-Supervised Online Refinement
- Authors: Tewodros Ayalew, Xiao Zhang, Kevin Yuanbo Wu, Tianchong Jiang, Michael Maire, Matthew R. Walter,
- Abstract summary: We present PROGRESSOR, a framework that learns a task-agnostic reward function from videos.
We show that PROGRESSOR enables robots to learn complex behaviors without any external supervision.
- Score: 16.768912344111946
- License:
- Abstract: We present PROGRESSOR, a novel framework that learns a task-agnostic reward function from videos, enabling policy training through goal-conditioned reinforcement learning (RL) without manual supervision. Underlying this reward is an estimate of the distribution over task progress as a function of the current, initial, and goal observations that is learned in a self-supervised fashion. Crucially, PROGRESSOR refines rewards adversarially during online RL training by pushing back predictions for out-of-distribution observations, to mitigate distribution shift inherent in non-expert observations. Utilizing this progress prediction as a dense reward together with an adversarial push-back, we show that PROGRESSOR enables robots to learn complex behaviors without any external supervision. Pretrained on large-scale egocentric human video from EPIC-KITCHENS, PROGRESSOR requires no fine-tuning on in-domain task-specific data for generalization to real-robot offline RL under noisy demonstrations, outperforming contemporary methods that provide dense visual reward for robotic learning. Our findings highlight the potential of PROGRESSOR for scalable robotic applications where direct action labels and task-specific rewards are not readily available.
Related papers
- Affordance-Guided Reinforcement Learning via Visual Prompting [51.361977466993345]
Keypoint-based Affordance Guidance for Improvements (KAGI) is a method leveraging rewards shaped by vision-language models (VLMs) for autonomous RL.
On real-world manipulation tasks specified by natural language descriptions, KAGI improves the sample efficiency of autonomous RL and enables successful task completion in 20K online fine-tuning steps.
arXiv Detail & Related papers (2024-07-14T21:41:29Z) - RILe: Reinforced Imitation Learning [60.63173816209543]
RILe is a framework that combines the strengths of imitation learning and inverse reinforcement learning to learn a dense reward function efficiently.
Our framework produces high-performing policies in high-dimensional tasks where direct imitation fails to replicate complex behaviors.
arXiv Detail & Related papers (2024-06-12T17:56:31Z) - REBEL: Reward Regularization-Based Approach for Robotic Reinforcement Learning from Human Feedback [61.54791065013767]
A misalignment between the reward function and human preferences can lead to catastrophic outcomes in the real world.
Recent methods aim to mitigate misalignment by learning reward functions from human preferences.
We propose a novel concept of reward regularization within the robotic RLHF framework.
arXiv Detail & Related papers (2023-12-22T04:56:37Z) - Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
We introduce RoboFuME, a reset-free fine-tuning system for robotic reinforcement learning.
Our insights are to utilize offline reinforcement learning techniques to ensure efficient online fine-tuning of a pre-trained policy.
Our method can incorporate data from an existing robot dataset and improve on a target task within as little as 3 hours of autonomous real-world experience.
arXiv Detail & Related papers (2023-10-23T17:50:08Z) - Curricular Subgoals for Inverse Reinforcement Learning [21.038691420095525]
Inverse Reinforcement Learning (IRL) aims to reconstruct the reward function from expert demonstrations to facilitate policy learning.
Existing IRL methods mainly focus on learning global reward functions to minimize the trajectory difference between the imitator and the expert.
We propose a novel Curricular Subgoal-based Inverse Reinforcement Learning framework, that explicitly disentangles one task with several local subgoals to guide agent imitation.
arXiv Detail & Related papers (2023-06-14T04:06:41Z) - Imitation from Observation With Bootstrapped Contrastive Learning [12.048166025000976]
Imitation from observation (IfO) is a learning paradigm that consists of training autonomous agents in a Markov Decision Process.
We present BootIfOL, an IfO algorithm that aims to learn a reward function that takes an agent trajectory and compares it to an expert.
We evaluate our approach on a variety of control tasks showing that we can train effective policies using a limited number of demonstrative trajectories.
arXiv Detail & Related papers (2023-02-13T17:32:17Z) - Basis for Intentions: Efficient Inverse Reinforcement Learning using
Past Experience [89.30876995059168]
inverse reinforcement learning (IRL) -- inferring the reward function of an agent from observing its behavior.
This paper addresses the problem of IRL -- inferring the reward function of an agent from observing its behavior.
arXiv Detail & Related papers (2022-08-09T17:29:49Z) - Imitation by Predicting Observations [17.86983397979034]
We present a new method for imitation solely from observations that achieves comparable performance to experts on challenging continuous control tasks.
Our method, which we call FORM, is derived from an inverse RL objective and imitates using a model of expert behavior learned by generative modelling of the expert's observations.
We show that FORM performs comparably to a strong baseline IRL method (GAIL) on the DeepMind Control Suite benchmark, while outperforming GAIL in the presence of task-irrelevant features.
arXiv Detail & Related papers (2021-07-08T14:09:30Z) - PEBBLE: Feedback-Efficient Interactive Reinforcement Learning via
Relabeling Experience and Unsupervised Pre-training [94.87393610927812]
We present an off-policy, interactive reinforcement learning algorithm that capitalizes on the strengths of both feedback and off-policy learning.
We demonstrate that our approach is capable of learning tasks of higher complexity than previously considered by human-in-the-loop methods.
arXiv Detail & Related papers (2021-06-09T14:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.