Integrating Dual Prototypes for Task-Wise Adaption in Pre-Trained Model-Based Class-Incremental Learning
- URL: http://arxiv.org/abs/2411.17766v1
- Date: Tue, 26 Nov 2024 05:04:38 GMT
- Title: Integrating Dual Prototypes for Task-Wise Adaption in Pre-Trained Model-Based Class-Incremental Learning
- Authors: Zhiming Xu, Suorong Yang, Baile Xu, Jian Zhao, Furao Shen,
- Abstract summary: Class-incremental learning (CIL) aims to acquire new classes while conserving historical knowledge incrementally.
This paper proposes the Dual Prototype network for Task-wise Adaption (DPTA) of PTM-based CIL.
- Score: 12.451582222211833
- License:
- Abstract: Class-incremental learning (CIL) aims to acquire new classes while conserving historical knowledge incrementally. Despite existing pre-trained model (PTM) based methods performing excellently in CIL, it is better to fine-tune them on downstream incremental tasks with massive patterns unknown to PTMs. However, using task streams for fine-tuning could lead to catastrophic forgetting that will erase the knowledge in PTMs. This paper proposes the Dual Prototype network for Task-wise Adaption (DPTA) of PTM-based CIL. For each incremental learning task, a task-wise adapter module is built to fine-tune the PTM, where the center-adapt loss forces the representation to be more centrally clustered and class separable. The dual prototype network improves the prediction process by enabling test-time adapter selection, where the raw prototypes deduce several possible task indexes of test samples to select suitable adapter modules for PTM, and the augmented prototypes that could separate highly correlated classes are utilized to determine the final result. Experiments on several benchmark datasets demonstrate the state-of-the-art performance of DPTA. The code will be open-sourced after the paper is published.
Related papers
- PCoTTA: Continual Test-Time Adaptation for Multi-Task Point Cloud Understanding [40.42904797189929]
We present PCoTTA, an innovative framework for Continual Test-Time Adaptation (CoTTA) in multi-task point cloud understanding.
Our PCoTTA involves three key components: automatic prototype mixture (APM), Gaussian Splatted feature shifting (GSFS), and contrastive prototype repulsion (CPR)
CPR is proposed to pull the nearest learnable prototype close to the testing feature and push it away from other prototypes, making each prototype distinguishable during the adaptation.
arXiv Detail & Related papers (2024-11-01T14:41:36Z) - Training-Free Unsupervised Prompt for Vision-Language Models [27.13778811871694]
We propose Training-Free Unsupervised Prompts (TFUP) to preserve inherent representation capabilities and enhance them with a residual connection to similarity-based prediction probabilities.
TFUP achieves surprising performance, even surpassing the training-base method on multiple classification datasets.
Our TFUP-T achieves new state-of-the-art classification performance compared to unsupervised and few-shot adaptation approaches on multiple benchmarks.
arXiv Detail & Related papers (2024-04-25T05:07:50Z) - Rethinking Few-shot 3D Point Cloud Semantic Segmentation [62.80639841429669]
This paper revisits few-shot 3D point cloud semantic segmentation (FS-PCS)
We focus on two significant issues in the state-of-the-art: foreground leakage and sparse point distribution.
To address these issues, we introduce a standardized FS-PCS setting, upon which a new benchmark is built.
arXiv Detail & Related papers (2024-03-01T15:14:47Z) - Rethinking Class-incremental Learning in the Era of Large Pre-trained Models via Test-Time Adaptation [20.62749699589017]
Class-incremental learning (CIL) is a challenging task that involves sequentially learning to categorize classes from new tasks.
We propose Test-Time Adaptation for Class-Incremental Learning (TTACIL) that first fine-tunes PTMs using Adapters on the first task.
Our TTACIL does not undergo any forgetting, while benefiting each task with the rich PTM features.
arXiv Detail & Related papers (2023-10-17T13:06:39Z) - Tuning Pre-trained Model via Moment Probing [62.445281364055795]
We propose a novel Moment Probing (MP) method to explore the potential of LP.
MP performs a linear classification head based on the mean of final features.
Our MP significantly outperforms LP and is competitive with counterparts at less training cost.
arXiv Detail & Related papers (2023-07-21T04:15:02Z) - Revisiting Class-Incremental Learning with Pre-Trained Models: Generalizability and Adaptivity are All You Need [84.3507610522086]
Class-incremental learning (CIL) aims to adapt to emerging new classes without forgetting old ones.
Recent pre-training has achieved substantial progress, making vast pre-trained models (PTMs) accessible for CIL.
We argue that the core factors in CIL are adaptivity for model updating and generalizability for knowledge transferring.
arXiv Detail & Related papers (2023-03-13T17:59:02Z) - CLIPood: Generalizing CLIP to Out-of-Distributions [73.86353105017076]
Contrastive language-image pre-training (CLIP) models have shown impressive zero-shot ability, but the further adaptation of CLIP on downstream tasks undesirably degrades OOD performances.
We propose CLIPood, a fine-tuning method that can adapt CLIP models to OOD situations where both domain shifts and open classes may occur on unseen test data.
Experiments on diverse datasets with different OOD scenarios show that CLIPood consistently outperforms existing generalization techniques.
arXiv Detail & Related papers (2023-02-02T04:27:54Z) - Prompt Tuning for Parameter-efficient Medical Image Segmentation [79.09285179181225]
We propose and investigate several contributions to achieve a parameter-efficient but effective adaptation for semantic segmentation on two medical imaging datasets.
We pre-train this architecture with a dedicated dense self-supervision scheme based on assignments to online generated prototypes.
We demonstrate that the resulting neural network model is able to attenuate the gap between fully fine-tuned and parameter-efficiently adapted models.
arXiv Detail & Related papers (2022-11-16T21:55:05Z) - Contrastive Prototype Learning with Augmented Embeddings for Few-Shot
Learning [58.2091760793799]
We propose a novel contrastive prototype learning with augmented embeddings (CPLAE) model.
With a class prototype as an anchor, CPL aims to pull the query samples of the same class closer and those of different classes further away.
Extensive experiments on several benchmarks demonstrate that our proposed CPLAE achieves new state-of-the-art.
arXiv Detail & Related papers (2021-01-23T13:22:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.