論文の概要: Pan-protein Design Learning Enables Task-adaptive Generalization for Low-resource Enzyme Design
- arxiv url: http://arxiv.org/abs/2411.17795v1
- Date: Tue, 26 Nov 2024 17:51:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:27:41.794541
- Title: Pan-protein Design Learning Enables Task-adaptive Generalization for Low-resource Enzyme Design
- Title(参考訳): 低リソース酵素設計のためのタスク適応型一般化を可能にするパンタンパク質設計学習
- Authors: Jiangbin Zheng, Ge Wang, Han Zhang, Stan Z. Li,
- Abstract要約: 我々は、事前学習されたタンパク質言語モデル(PPLM)を利用するドメイン適応型フレームワークであるCrossDesignを紹介する。
タンパク質構造を配列と整合させることで、CrossDesignは制限された構造データの制限を克服し、事前訓練された知識を構造モデルに転送する。
実験結果はCrossDesignの優れたパフォーマンスとロバスト性、特にドメイン外酵素について強調した。
- 参考スコア(独自算出の注目度): 44.258193520999484
- License:
- Abstract: Computational protein design (CPD) offers transformative potential for bioengineering, but current deep CPD models, focused on universal domains, struggle with function-specific designs. This work introduces a novel CPD paradigm tailored for functional design tasks, particularly for enzymes-a key protein class often lacking specific application efficiency. To address structural data scarcity, we present CrossDesign, a domain-adaptive framework that leverages pretrained protein language models (PPLMs). By aligning protein structures with sequences, CrossDesign transfers pretrained knowledge to structure models, overcoming the limitations of limited structural data. The framework combines autoregressive (AR) and non-autoregressive (NAR) states in its encoder-decoder architecture, applying it to enzyme datasets and pan-proteins. Experimental results highlight CrossDesign's superior performance and robustness, especially with out-of-domain enzymes. Additionally, the model excels in fitness prediction when tested on large-scale mutation data, showcasing its stability.
- Abstract(参考訳): 計算タンパク質設計(CPD)はバイオエンジニアリングの変革的ポテンシャルを提供するが、現在の深部CTDモデルは普遍的なドメインに焦点を置き、機能固有の設計に苦しむ。
この研究は、機能設計タスク、特に酵素のための、特定の応用効率を欠く重要なタンパク質クラスに適した新しいCDDパラダイムを導入している。
構造データ不足に対処するために,事前学習されたタンパク質言語モデル(PPLM)を利用するドメイン適応型フレームワークであるCrossDesignを提案する。
タンパク質構造を配列と整合させることで、CrossDesignは制限された構造データの制限を克服し、事前訓練された知識を構造モデルに転送する。
このフレームワークは、エンコーダ-デコーダアーキテクチャにおいて自己回帰(AR)と非自己回帰(NAR)状態を組み合わせて、酵素データセットやパンタンパク質に適用する。
実験結果はCrossDesignの優れたパフォーマンスとロバスト性、特にドメイン外酵素について強調した。
さらに、このモデルは大規模な突然変異データでテストした場合のフィットネス予測に優れ、安定性を示している。
関連論文リスト
- MeToken: Uniform Micro-environment Token Boosts Post-Translational Modification Prediction [65.33218256339151]
翻訳後修飾(PTM)はプロテオームの複雑さと機能を大幅に拡張する。
既存の計算手法は主に、配列依存的なモチーフの認識によって引き起こされる、PTM部位を予測するタンパク質配列に焦点を当てている。
本稿では,各酸のマイクロ環境をトークン化し,シーケンス情報と構造情報を統一された離散トークンに統合するMeTokenモデルを提案する。
論文 参考訳(メタデータ) (2024-11-04T07:14:28Z) - Endowing Protein Language Models with Structural Knowledge [5.587293092389789]
本稿では,タンパク質構造データを統合することにより,タンパク質言語モデルを強化する新しいフレームワークを提案する。
PST(Protein Structure Transformer)と呼ばれる精製モデルは、小さなタンパク質構造データベース上でさらに事前訓練されている。
PSTは、タンパク質配列の最先端基盤モデルであるESM-2を一貫して上回り、タンパク質機能予測の新しいベンチマークを設定している。
論文 参考訳(メタデータ) (2024-01-26T12:47:54Z) - A Hierarchical Training Paradigm for Antibody Structure-sequence
Co-design [54.30457372514873]
抗体配列構造共設計のための階層的訓練パラダイム(HTP)を提案する。
HTPは4段階の訓練段階から構成され、それぞれが特定のタンパク質のモダリティに対応する。
実証実験により、HTPは共同設計問題において新しい最先端性能を設定できることが示されている。
論文 参考訳(メタデータ) (2023-10-30T02:39:15Z) - Functional Geometry Guided Protein Sequence and Backbone Structure
Co-Design [12.585697288315846]
本稿では,自動検出機能部位に基づくタンパク質配列と構造を共同設計するモデルを提案する。
NAEProは、全シーケンスでグローバルな相関を捉えることができる、注目層と同変層のインターリービングネットワークによって駆動される。
実験結果から,本モデルは全競技種の中で,最高アミノ酸回収率,TMスコア,最低RMSDを実現していることがわかった。
論文 参考訳(メタデータ) (2023-10-06T16:08:41Z) - Generative Pretrained Autoregressive Transformer Graph Neural Network
applied to the Analysis and Discovery of Novel Proteins [0.0]
本稿では,タンパク質モデリングにおける複雑な前方および逆問題を解決するために,フレキシブル言語モデルに基づくディープラーニング戦略を適用した。
本モデルを用いて, 二次構造含量(残量レベル, 全体含量), タンパク質溶解度, シークエンシングタスクの予測を行った。
追加タスクを追加することで、モデルが全体的なパフォーマンスを改善するために活用する創発的なシナジーが得られることが分かりました。
論文 参考訳(メタデータ) (2023-05-07T12:30:24Z) - Structure-informed Language Models Are Protein Designers [69.70134899296912]
配列ベースタンパク質言語モデル(pLM)の汎用的手法であるLM-Designを提案する。
pLMに軽量な構造アダプターを埋め込んだ構造手術を行い,構造意識を付加した構造手術を行った。
実験の結果,我々の手法は最先端の手法よりも大きなマージンで優れていることがわかった。
論文 参考訳(メタデータ) (2023-02-03T10:49:52Z) - Protein Sequence and Structure Co-Design with Equivariant Translation [19.816174223173494]
既存のアプローチは自己回帰モデルまたは拡散モデルを用いてタンパク質配列と構造の両方を生成する。
本稿では,タンパク質配列と構造共設計が可能な新しいアプローチを提案する。
我々のモデルは、幾何学的制約と文脈特徴からの相互作用を推論する三角法を意識したエンコーダで構成されている。
全てのタンパク質アミノ酸は翻訳工程で1ショットずつ更新され、推論プロセスが大幅に加速される。
論文 参考訳(メタデータ) (2022-10-17T06:00:12Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
この研究は、薬物標的タンパク質の構造的アンサンブルに基づいて生成ニューラルネットワークを学習することに焦点を当てている。
モデル課題は、様々な薬物分子に結合したタンパク質の構造的変動を特徴付けることである。
その結果,我々の幾何学的学習に基づく手法は,複雑な構造変化を生成するための精度と効率の両方を享受できることがわかった。
論文 参考訳(メタデータ) (2022-05-20T19:38:00Z) - EBM-Fold: Fully-Differentiable Protein Folding Powered by Energy-based
Models [53.17320541056843]
本研究では,データ駆動型生成ネットワークを用いたタンパク質構造最適化手法を提案する。
EBM-Foldアプローチは,従来のロゼッタ構造最適化ルーチンと比較して,高品質なデコイを効率よく生成できる。
論文 参考訳(メタデータ) (2021-05-11T03:40:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。