論文の概要: A Model-Centric Review of Deep Learning for Protein Design
- arxiv url: http://arxiv.org/abs/2502.19173v1
- Date: Wed, 26 Feb 2025 14:31:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-27 14:56:14.467538
- Title: A Model-Centric Review of Deep Learning for Protein Design
- Title(参考訳): タンパク質設計のための深層学習のモデル中心的研究
- Authors: Gregory W. Kyro, Tianyin Qiu, Victor S. Batista,
- Abstract要約: ディープラーニングはタンパク質設計を変換し、正確な構造予測、シーケンス最適化、de novoタンパク質生成を可能にした。
ProtGPT2、ProteinMPNN、RFdiffusionなどの生成モデルは、自然進化に基づく制限を超えてシーケンスとバックボーンの設計を可能にした。
最近では、ESM3を含む共同シーケンス構造共設計モデルが両方のモダリティを統一されたフレームワークに統合し、設計性が向上した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Deep learning has transformed protein design, enabling accurate structure prediction, sequence optimization, and de novo protein generation. Advances in single-chain protein structure prediction via AlphaFold2, RoseTTAFold, ESMFold, and others have achieved near-experimental accuracy, inspiring successive work extended to biomolecular complexes via AlphaFold Multimer, RoseTTAFold All-Atom, AlphaFold 3, Chai-1, Boltz-1 and others. Generative models such as ProtGPT2, ProteinMPNN, and RFdiffusion have enabled sequence and backbone design beyond natural evolution-based limitations. More recently, joint sequence-structure co-design models, including ESM3, have integrated both modalities into a unified framework, resulting in improved designability. Despite these advances, challenges still exist pertaining to modeling sequence-structure-function relationships and ensuring robust generalization beyond the regions of protein space spanned by the training data. Future advances will likely focus on joint sequence-structure-function co-design frameworks that are able to model the fitness landscape more effectively than models that treat these modalities independently. Current capabilities, coupled with the dizzying rate of progress, suggest that the field will soon enable rapid, rational design of proteins with tailored structures and functions that transcend the limitations imposed by natural evolution. In this review, we discuss the current capabilities of deep learning methods for protein design, focusing on some of the most revolutionary and capable models with respect to their functionality and the applications that they enable, leading up to the current challenges of the field and the optimal path forward.
- Abstract(参考訳): ディープラーニングはタンパク質設計を変換し、正確な構造予測、シーケンス最適化、de novoタンパク質生成を可能にした。
AlphaFold2, RoseTTAFold, ESMFoldなどによる単鎖タンパク質構造予測の進歩は、AlphaFold Multimer, RoseTTAFold All-Atom, AlphaFold 3, Chai-1, Boltz-1などの生体分子複合体への連続的な研究を刺激し、ほぼ実験的な精度を達成した。
ProtGPT2、ProteinMPNN、RFdiffusionなどの生成モデルは、自然進化に基づく制限を超えてシーケンスとバックボーンの設計を可能にした。
最近では、ESM3を含む共同シーケンス構造共設計モデルが両方のモダリティを統一されたフレームワークに統合し、設計性が向上した。
これらの進歩にもかかわらず、配列構造-機能関係をモデル化し、トレーニングデータによって分散されるタンパク質空間の領域を超えて堅牢な一般化を保証することに関する課題が今も残っている。
将来の進歩は、これらのモダリティを独立に扱うモデルよりも、フィットネスのランドスケープを効果的にモデル化できる共同シーケンス-構造-機能共設計フレームワークに焦点が当てられるだろう。
現在の能力は、進行の進行速度と相まって、自然進化によって課される制限を超越した構造と機能を持つタンパク質の迅速かつ合理的な設計を可能にすることを示唆している。
本稿では,タンパク質設計におけるディープラーニング手法の現在の能力について論じ,その機能と実現可能なアプリケーションに関して,最も革新的で有能なモデルに焦点をあてる。
関連論文リスト
- Multi-Scale Representation Learning for Protein Fitness Prediction [31.735234482320283]
これまでの手法は主に、巨大でラベルなしのタンパク質配列や構造データセットに基づいて訓練された自己教師型モデルに依存してきた。
本稿では,タンパク質の機能を統合する新しいマルチモーダル表現学習フレームワークであるSequence-Structure-Surface Fitness (S3F)モデルを紹介する。
提案手法は,タンパク質言語モデルからの配列表現と,タンパク質のバックボーンと詳細な表面トポロジーをコードするGeometric Vector Perceptronネットワークを組み合わせる。
論文 参考訳(メタデータ) (2024-12-02T04:28:10Z) - Pan-protein Design Learning Enables Task-adaptive Generalization for Low-resource Enzyme Design [44.258193520999484]
我々は、事前学習されたタンパク質言語モデル(PPLM)を利用するドメイン適応型フレームワークであるCrossDesignを紹介する。
タンパク質構造を配列と整合させることで、CrossDesignは制限された構造データの制限を克服し、事前訓練された知識を構造モデルに転送する。
実験結果はCrossDesignの優れたパフォーマンスとロバスト性、特にドメイン外酵素について強調した。
論文 参考訳(メタデータ) (2024-11-26T17:51:33Z) - SFM-Protein: Integrative Co-evolutionary Pre-training for Advanced Protein Sequence Representation [97.99658944212675]
タンパク質基盤モデルのための新しい事前学習戦略を導入する。
アミノ酸残基間の相互作用を強調し、短距離および長距離の共進化的特徴の抽出を強化する。
大規模タンパク質配列データセットを用いて学習し,より優れた一般化能力を示す。
論文 参考訳(メタデータ) (2024-10-31T15:22:03Z) - AlphaFolding: 4D Diffusion for Dynamic Protein Structure Prediction with Reference and Motion Guidance [18.90451943620277]
本研究では分子動力学(MD)シミュレーションデータを用いた動的タンパク質構造学習のための革新的4次元拡散モデルを提案する。
本モデルでは,32時間で最大256個のアミノ酸を含むタンパク質の動的3次元構造を予測できる。
論文 参考訳(メタデータ) (2024-08-22T14:12:50Z) - Sequence-Augmented SE(3)-Flow Matching For Conditional Protein Backbone Generation [55.93511121486321]
タンパク質構造生成のための新しいシーケンス条件付きフローマッチングモデルFoldFlow-2を紹介する。
我々は、以前の作業のPDBデータセットよりも桁違いに大きい新しいデータセットでFoldFlow-2を大規模にトレーニングします。
我々はFoldFlow-2が従来のタンパク質構造に基づく生成モデルよりも優れていることを実証的に観察した。
論文 参考訳(メタデータ) (2024-05-30T17:53:50Z) - xTrimoPGLM: Unified 100B-Scale Pre-trained Transformer for Deciphering the Language of Protein [74.64101864289572]
本稿では,タンパク質の理解と生成を同時に行うために,統一されたタンパク質言語モデル xTrimoPGLM を提案する。
xTrimoPGLMは、4つのカテゴリにわたる18のタンパク質理解ベンチマークにおいて、他の高度なベースラインを著しく上回っている。
また、自然の原理に従ってデノボタンパク質配列を生成でき、微調整を監督した後にプログラム可能な生成を行うことができる。
論文 参考訳(メタデータ) (2024-01-11T15:03:17Z) - Generative artificial intelligence for de novo protein design [1.2021565114959365]
生成的アーキテクチャは、新しいが現実的なタンパク質を生成するには適しているようだ。
設計プロトコルは20%近い実験的な成功率を達成した。
広範な進歩にもかかわらず、フィールド全体の課題は明らかである。
論文 参考訳(メタデータ) (2023-10-15T00:02:22Z) - Structure-informed Language Models Are Protein Designers [69.70134899296912]
配列ベースタンパク質言語モデル(pLM)の汎用的手法であるLM-Designを提案する。
pLMに軽量な構造アダプターを埋め込んだ構造手術を行い,構造意識を付加した構造手術を行った。
実験の結果,我々の手法は最先端の手法よりも大きなマージンで優れていることがわかった。
論文 参考訳(メタデータ) (2023-02-03T10:49:52Z) - Generating Novel, Designable, and Diverse Protein Structures by
Equivariantly Diffusing Oriented Residue Clouds [0.0]
構造に基づくタンパク質設計は、設計可能で、新規で多様な構造を見つけることを目的としている。
生成モデルは、複雑なデータの低次元構造を暗黙的に学習することで、魅力的な代替手段を提供する。
我々は,3次元空間における配向参照フレームの雲を用いて離散時間拡散を行うタンパク質構造の生成モデルであるGenieを開発する。
論文 参考訳(メタデータ) (2023-01-29T16:44:19Z) - State-specific protein-ligand complex structure prediction with a
multi-scale deep generative model [68.28309982199902]
タンパク質-リガンド複合体構造を直接予測できる計算手法であるNeuralPLexerを提案する。
我々の研究は、データ駆動型アプローチがタンパク質と小分子の構造的協調性を捉え、酵素や薬物分子などの設計を加速させる可能性を示唆している。
論文 参考訳(メタデータ) (2022-09-30T01:46:38Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
この研究は、薬物標的タンパク質の構造的アンサンブルに基づいて生成ニューラルネットワークを学習することに焦点を当てている。
モデル課題は、様々な薬物分子に結合したタンパク質の構造的変動を特徴付けることである。
その結果,我々の幾何学的学習に基づく手法は,複雑な構造変化を生成するための精度と効率の両方を享受できることがわかった。
論文 参考訳(メタデータ) (2022-05-20T19:38:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。