論文の概要: Automated Test Transfer Across Android Apps Using Large Language Models
- arxiv url: http://arxiv.org/abs/2411.17933v1
- Date: Tue, 26 Nov 2024 23:06:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:27:54.249101
- Title: Automated Test Transfer Across Android Apps Using Large Language Models
- Title(参考訳): 大規模言語モデルを用いたAndroidアプリ間の自動テスト転送
- Authors: Benyamin Beyzaei, Saghar Talebipour, Ghazal Rafiei, Nenad Medvidovic, Sam Malek,
- Abstract要約: 本稿では、LLM(Large Language Models)を活用して、モバイルアプリ間で使用量ベースのUIテストを効率的に転送する革新的な手法であるLLMigrateを紹介する。
LLMigrateは自動テスト転送で97.5%の成功率を達成でき、スクラッチからテストを書くのに必要な手作業が91.1%削減された。
- 参考スコア(独自算出の注目度): 7.865081492588628
- License:
- Abstract: The pervasiveness of mobile apps in everyday life necessitates robust testing strategies to ensure quality and efficiency, especially through end-to-end usage-based tests for mobile apps' user interfaces (UIs). However, manually creating and maintaining such tests can be costly for developers. Since many apps share similar functionalities beneath diverse UIs, previous works have shown the possibility of transferring UI tests across different apps within the same domain, thereby eliminating the need for writing the tests manually. However, these methods have struggled to accommodate real-world variations, often facing limitations in scenarios where source and target apps are not very similar or fail to accurately transfer test oracles. This paper introduces an innovative technique, LLMigrate, which leverages Large Language Models (LLMs) to efficiently transfer usage-based UI tests across mobile apps. Our experimental evaluation shows LLMigrate can achieve a 97.5% success rate in automated test transfer, reducing the manual effort required to write tests from scratch by 91.1%. This represents an improvement of 9.1% in success rate and 38.2% in effort reduction compared to the best-performing prior technique, setting a new benchmark for automated test transfer.
- Abstract(参考訳): モバイルアプリの日常生活における普及性は、特にモバイルアプリのユーザインターフェース(UI)のエンドツーエンド使用ベースのテストを通じて、品質と効率を確保するための堅牢なテスト戦略を必要とします。
しかし、このようなテストを手動で作成し、メンテナンスすることは、開発者にとってはコストがかかる。
多くのアプリが、多様なUIの下で同様の機能を共有しているため、以前の研究では、同じドメイン内の異なるアプリ間でUIテストを転送する可能性を示しており、手動でテストを書く必要がなくなる。
しかし、これらの手法は現実世界のバリエーションに対応するのに苦労しており、ソースとターゲットのアプリがあまり似ていないり、テストのオーラクルを正確に転送できないシナリオでは、しばしば制限に直面している。
本稿では、LLM(Large Language Models)を活用して、モバイルアプリ間で使用量ベースのUIテストを効率的に転送する革新的な手法であるLLMigrateを紹介する。
LLMigrateは自動テスト転送で97.5%の成功率を達成でき、スクラッチからテストを書くのに必要な手作業が91.1%削減された。
これは、成功率9.1%、努力削減38.2%の改善であり、最も優れた先行技術と比較して、自動テスト転送のための新しいベンチマークが設定されている。
関連論文リスト
- FLaRe: Achieving Masterful and Adaptive Robot Policies with Large-Scale Reinforcement Learning Fine-Tuning [74.25049012472502]
FLaReは、堅牢な事前訓練された表現、大規模なトレーニング、勾配安定化技術を統合する大規模な強化学習フレームワークである。
提案手法は,タスク完了に向けた事前訓練されたポリシーを整列し,これまで実証され,全く新しいタスクや実施状況において,最先端(SoTA)のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-09-25T03:15:17Z) - Skill-Adpative Imitation Learning for UI Test Reuse [13.538724823517292]
UIテストマイグレーションの有効性を高めるために,スキル適応型模倣学習フレームワークを提案する。
その結果、SAILはUIテストマイグレーションの有効性を大幅に改善し、149%の成功率が最先端のアプローチよりも高いことがわかった。
論文 参考訳(メタデータ) (2024-09-20T08:13:04Z) - Enabling Cost-Effective UI Automation Testing with Retrieval-Based LLMs: A Case Study in WeChat [8.80569452545511]
機械学習と大規模言語モデルを組み合わせることで、業界アプリケーションのためのコスト効率の良いUI自動化テストを作成するために、CATを導入します。
次にCATは機械学習技術を採用し、LLMを補完として、ターゲット要素をUI画面にマップする。
WeChatテストデータセットの評価では、CATのパフォーマンスとコスト効率が示され、90%のUI自動化と0.34ドルのコストが達成されました。
論文 参考訳(メタデータ) (2024-09-12T08:25:33Z) - Towards Open-World Mobile Manipulation in Homes: Lessons from the Neurips 2023 HomeRobot Open Vocabulary Mobile Manipulation Challenge [93.4434417387526]
ロボット工学における鍵となるベンチマークタスクとして,Open Vocabulary Mobile Manipulationを提案する。
我々は,この課題に対する解決策を評価するために,シミュレーションと実世界のコンポーネントを兼ね備えたNeurIPS 2023コンペティションを組織した。
シミュレーションと実環境設定の両方で使用される結果と方法論を詳述する。
論文 参考訳(メタデータ) (2024-07-09T15:15:01Z) - Active Test-Time Adaptation: Theoretical Analyses and An Algorithm [51.84691955495693]
テスト時間適応(TTA)は、教師なし設定でストリーミングテストデータの分散シフトに対処する。
完全TTA設定内に能動学習を統合する能動テスト時間適応(ATTA)の新たな問題設定を提案する。
論文 参考訳(メタデータ) (2024-04-07T22:31:34Z) - Align Your Prompts: Test-Time Prompting with Distribution Alignment for
Zero-Shot Generalization [64.62570402941387]
テスト領域のギャップを埋めるために、機能分散シフトを最小限にして、テスト時にマルチモーダルプロンプトを適用するために、単一のテストサンプルを使用します。
提案手法は,既存のプロンプト学習技術以上のゼロショットトップ1精度を向上し,ベースラインのMaPLeよりも3.08%向上した。
論文 参考訳(メタデータ) (2023-11-02T17:59:32Z) - Testing Updated Apps by Adapting Learned Models [2.362412515574206]
学習したモデルの継続的適応(CALM)は、アプリの更新を効率的にテストする自動テストアプローチである。
機能的正確性は、主にAppスクリーンの視覚的検査によって検証できるため、CALMは、ソフトウェアテスタによって視覚化されるAppスクリーンの数を最小化する。
実験により,CALMは6つの最先端手法よりも,更新手法と命令の比率が有意に高いことが示された。
論文 参考訳(メタデータ) (2023-08-10T12:59:24Z) - Neural Embeddings for Web Testing [49.66745368789056]
既存のクローラは、状態等価性を評価するために、アプリ固有のしきい値ベースのアルゴリズムに依存している。
ニューラルネットワークの埋め込みとしきい値のない分類器に基づく新しい抽象関数WEBEMBEDを提案する。
WEBEMBEDは,9つのWebアプリケーションに対する評価の結果,近距離検出により最先端技術よりも精度が高いことがわかった。
論文 参考訳(メタデータ) (2023-06-12T19:59:36Z) - Chatting with GPT-3 for Zero-Shot Human-Like Mobile Automated GUI
Testing [23.460051600514806]
GPTDroid を提案し,GUI ページ情報を LLM に渡してテストスクリプトを抽出することにより,大規模言語モデルにモバイルアプリとのチャットを依頼する。
そこで我々はGUIページの静的コンテキストと反復テストプロセスの動的コンテキストを抽出する。
Google Playの86のアプリ上でGPTDroidを評価し、そのアクティビティカバレッジは71%で、最高のベースラインよりも32%高く、最高のベースラインよりも高速で36%多くのバグを検出することができます。
論文 参考訳(メタデータ) (2023-05-16T13:46:52Z) - Hybrid Intelligent Testing in Simulation-Based Verification [0.0]
数百万のテストは、カバレッジの目標を達成するために必要かもしれない。
カバレッジ指向のテスト選択は、カバレッジフィードバックからバイアステストまで、最も効果的なテストへと学習する。
ノベルティ駆動検証は、以前の刺激とは異なる刺激を識別し、シミュレートすることを学ぶ。
論文 参考訳(メタデータ) (2022-05-19T13:22:08Z) - Emerging App Issue Identification via Online Joint Sentiment-Topic
Tracing [66.57888248681303]
本稿では,MERITという新しい問題検出手法を提案する。
AOBSTモデルに基づいて、1つのアプリバージョンに対するユーザレビューに否定的に反映されたトピックを推測する。
Google PlayやAppleのApp Storeで人気のアプリに対する実験は、MERITの有効性を実証している。
論文 参考訳(メタデータ) (2020-08-23T06:34:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。