論文の概要: Multi-Label Bayesian Active Learning with Inter-Label Relationships
- arxiv url: http://arxiv.org/abs/2411.17941v1
- Date: Tue, 26 Nov 2024 23:28:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:25:59.089276
- Title: Multi-Label Bayesian Active Learning with Inter-Label Relationships
- Title(参考訳): ラベル間関係を考慮したマルチラベルベイズアクティブラーニング
- Authors: Yuanyuan Qi, Jueqing Lu, Xiaohao Yang, Joanne Enticott, Lan Du,
- Abstract要約: 両課題に対処する多ラベルアクティブラーニング戦略を提案する。
本手法は, 漸進的に更新された正相関行列と負相関行列を組み込んで, 共起関係と解離関係を捉える。
私たちの戦略は、いくつかの確立された方法と比較して、信頼性と優れたパフォーマンスを継続的に達成します。
- 参考スコア(独自算出の注目度): 3.88369051454137
- License:
- Abstract: The primary challenge of multi-label active learning, differing it from multi-class active learning, lies in assessing the informativeness of an indefinite number of labels while also accounting for the inherited label correlation. Existing studies either require substantial computational resources to leverage correlations or fail to fully explore label dependencies. Additionally, real-world scenarios often require addressing intrinsic biases stemming from imbalanced data distributions. In this paper, we propose a new multi-label active learning strategy to address both challenges. Our method incorporates progressively updated positive and negative correlation matrices to capture co-occurrence and disjoint relationships within the label space of annotated samples, enabling a holistic assessment of uncertainty rather than treating labels as isolated elements. Furthermore, alongside diversity, our model employs ensemble pseudo labeling and beta scoring rules to address data imbalances. Extensive experiments on four realistic datasets demonstrate that our strategy consistently achieves more reliable and superior performance, compared to several established methods.
- Abstract(参考訳): マルチラベルアクティブラーニングの第一の課題は、多クラスアクティブラーニングとは違い、無定数のラベルの情報を評価することであり、また、継承されたラベルの相関も考慮することである。
既存の研究は、相関性を利用するためにかなりの計算資源を必要とするか、ラベル依存を十分に調べることができないかのいずれかである。
さらに、現実のシナリオでは、不均衡なデータ分散に起因する本質的なバイアスに対処する必要があることが多い。
本稿では,両課題に対処する多ラベルアクティブラーニング戦略を提案する。
本手法は, ラベルを独立した要素として扱うのではなく, ラベル空間内での共起関係と解離関係を, 段階的に更新した正相関行列と負相関行列を組み込むことにより, 不確かさの総合評価を可能にする。
さらに、多様性とともに、我々のモデルはアンサンブル擬似ラベリングとベータスコアリングルールを用いてデータの不均衡に対処する。
4つの現実的なデータセットに対する大規模な実験により、我々の戦略はいくつかの確立された手法と比較して、常に信頼性と優れた性能を達成できることを示した。
関連論文リスト
- Multi-Label Contrastive Learning : A Comprehensive Study [48.81069245141415]
マルチラベルの分類は、研究と産業の両方において重要な領域として現れてきた。
対照的な学習をマルチラベル分類に適用することは、ユニークな課題である。
多様な環境における多ラベル分類のためのコントラスト学習損失の詳細な研究を行う。
論文 参考訳(メタデータ) (2024-11-27T20:20:06Z) - Similarity-Dissimilarity Loss with Supervised Contrastive Learning for Multi-label Classification [11.499489446062054]
マルチラベル分類のためのコントラスト学習を用いた類似性-類似性損失を提案する。
提案する損失は、教師付きコントラスト学習パラダイムの下で、すべてのエンコーダの性能を効果的に向上させる。
論文 参考訳(メタデータ) (2024-10-17T11:12:55Z) - Learning with Complementary Labels Revisited: The Selected-Completely-at-Random Setting Is More Practical [66.57396042747706]
補完ラベル学習は、弱教師付き学習問題である。
均一分布仮定に依存しない一貫したアプローチを提案する。
相補的なラベル学習は、負のラベル付きバイナリ分類問題の集合として表現できる。
論文 参考訳(メタデータ) (2023-11-27T02:59:17Z) - Class-Distribution-Aware Pseudo Labeling for Semi-Supervised Multi-Label
Learning [97.88458953075205]
Pseudo-labelingは、ラベルなしデータを利用するための人気で効果的なアプローチとして登場した。
本稿では,クラスアウェアの擬似ラベル処理を行うCAP(Class-Aware Pseudo-Labeling)という新しい手法を提案する。
論文 参考訳(メタデータ) (2023-05-04T12:52:18Z) - One Positive Label is Sufficient: Single-Positive Multi-Label Learning
with Label Enhancement [71.9401831465908]
本研究では,SPMLL (Single- positive multi-label learning) について検討した。
ラベルエンハンスメントを用いた単陽性MultIラベル学習という新しい手法を提案する。
ベンチマークデータセットの実験により,提案手法の有効性が検証された。
論文 参考訳(メタデータ) (2022-06-01T14:26:30Z) - Disentangling Sampling and Labeling Bias for Learning in Large-Output
Spaces [64.23172847182109]
異なる負のサンプリングスキームが支配的ラベルと稀なラベルで暗黙的にトレードオフパフォーマンスを示す。
すべてのラベルのサブセットで作業することで生じるサンプリングバイアスと、ラベルの不均衡に起因するデータ固有のラベルバイアスの両方に明示的に対処する統一された手段を提供する。
論文 参考訳(メタデータ) (2021-05-12T15:40:13Z) - Active Learning under Label Shift [80.65643075952639]
重要度とクラスバランスサンプリングのトレードオフを取り入れた「メディカル分布」を導入する。
ラベルシフト(MALLS)下でのメディア型アクティブラーニングの複雑さと一般化保証を実証する。
我々は、MALLSスケールを高次元データセットに実証的に示し、深層学習タスクにおいて、アクティブラーニングのサンプル複雑性を60%削減することができる。
論文 参考訳(メタデータ) (2020-07-16T17:30:02Z) - Multi-Label Sampling based on Local Label Imbalance [7.355362369511579]
クラス不均衡は、ほとんどのマルチラベル学習方法を妨げるマルチラベルデータ固有の特徴である。
既存のマルチラベルサンプリングアプローチは、マルチラベルデータセットのグローバル不均衡を軽減する。
実際に、パフォーマンス劣化において重要な役割を果たすマイノリティクラス例の局所的な地区における不均衡レベルである。
論文 参考訳(メタデータ) (2020-05-07T04:14:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。