Evaluating Generative AI-Enhanced Content: A Conceptual Framework Using Qualitative, Quantitative, and Mixed-Methods Approaches
- URL: http://arxiv.org/abs/2411.17943v1
- Date: Tue, 26 Nov 2024 23:34:07 GMT
- Title: Evaluating Generative AI-Enhanced Content: A Conceptual Framework Using Qualitative, Quantitative, and Mixed-Methods Approaches
- Authors: Saman Sarraf,
- Abstract summary: Generative AI (GenAI) has revolutionized content generation, offering transformative capabilities for improving language coherence, readability, and overall quality.
This manuscript explores the application of qualitative, quantitative, and mixed-methods research approaches to evaluate the performance of GenAI models in enhancing scientific writing.
- Score: 0.0
- License:
- Abstract: Generative AI (GenAI) has revolutionized content generation, offering transformative capabilities for improving language coherence, readability, and overall quality. This manuscript explores the application of qualitative, quantitative, and mixed-methods research approaches to evaluate the performance of GenAI models in enhancing scientific writing. Using a hypothetical use case involving a collaborative medical imaging manuscript, we demonstrate how each method provides unique insights into the impact of GenAI. Qualitative methods gather in-depth feedback from expert reviewers, analyzing their responses using thematic analysis tools to capture nuanced improvements and identify limitations. Quantitative approaches employ automated metrics such as BLEU, ROUGE, and readability scores, as well as user surveys, to objectively measure improvements in coherence, fluency, and structure. Mixed-methods research integrates these strengths, combining statistical evaluations with detailed qualitative insights to provide a comprehensive assessment. These research methods enable quantifying improvement levels in GenAI-generated content, addressing critical aspects of linguistic quality and technical accuracy. They also offer a robust framework for benchmarking GenAI tools against traditional editing processes, ensuring the reliability and effectiveness of these technologies. By leveraging these methodologies, researchers can evaluate the performance boost driven by GenAI, refine its applications, and guide its responsible adoption in high-stakes domains like healthcare and scientific research. This work underscores the importance of rigorous evaluation frameworks for advancing trust and innovation in GenAI.
Related papers
- Computational Safety for Generative AI: A Signal Processing Perspective [65.268245109828]
computational safety is a mathematical framework that enables the quantitative assessment, formulation, and study of safety challenges in GenAI.
We show how sensitivity analysis and loss landscape analysis can be used to detect malicious prompts with jailbreak attempts.
We discuss key open research challenges, opportunities, and the essential role of signal processing in computational AI safety.
arXiv Detail & Related papers (2025-02-18T02:26:50Z) - Position: Evaluating Generative AI Systems is a Social Science Measurement Challenge [78.35388859345056]
We argue that the ML community would benefit from learning from and drawing on the social sciences when developing measurement instruments for evaluating GenAI systems.
We present a four-level framework, grounded in measurement theory from the social sciences, for measuring concepts related to the capabilities, behaviors, and impacts of GenAI.
arXiv Detail & Related papers (2025-02-01T21:09:51Z) - KRAIL: A Knowledge-Driven Framework for Base Human Reliability Analysis Integrating IDHEAS and Large Language Models [2.7378790256389047]
This paper introduces a novel two-stage framework for knowledge-driven reliability analysis, integrating IDHEAS and LLMs (KRAIL)
Inspired by the success of large language models (LLMs) in natural language processing, this paper introduces a novel two-stage framework for knowledge-driven reliability analysis.
arXiv Detail & Related papers (2024-12-20T06:21:34Z) - A Unified Framework for Evaluating the Effectiveness and Enhancing the Transparency of Explainable AI Methods in Real-World Applications [2.0681376988193843]
"Black box" characteristic of AI models constrains interpretability, transparency, and reliability.
This study presents a unified XAI evaluation framework to evaluate correctness, interpretability, robustness, fairness, and completeness of explanations generated by AI models.
arXiv Detail & Related papers (2024-12-05T05:30:10Z) - Dimensions of Generative AI Evaluation Design [51.541816010127256]
We propose a set of general dimensions that capture critical choices involved in GenAI evaluation design.
These dimensions include the evaluation setting, the task type, the input source, the interaction style, the duration, the metric type, and the scoring method.
arXiv Detail & Related papers (2024-11-19T18:25:30Z) - Generative AI Tools in Academic Research: Applications and Implications for Qualitative and Quantitative Research Methodologies [0.0]
This study examines the impact of Generative Artificial Intelligence (GenAI) on academic research, focusing on its application to qualitative and quantitative data analysis.
GenAI tools evolve rapidly, they offer new possibilities for enhancing research productivity and democratising complex analytical processes.
Their integration into academic practice raises significant questions regarding research integrity and security, authorship, and the changing nature of scholarly work.
arXiv Detail & Related papers (2024-08-13T13:10:03Z) - Human-AI Collaboration in Thematic Analysis using ChatGPT: A User Study
and Design Recommendations [0.0]
Generative artificial intelligence (GenAI) offers promising potential for advancing human-AI collaboration in qualitative research.
This work delves into researchers' perceptions of their collaboration with GenAI, specifically ChatGPT.
arXiv Detail & Related papers (2023-11-07T13:54:56Z) - From Static Benchmarks to Adaptive Testing: Psychometrics in AI Evaluation [60.14902811624433]
We discuss a paradigm shift from static evaluation methods to adaptive testing.
This involves estimating the characteristics and value of each test item in the benchmark and dynamically adjusting items in real-time.
We analyze the current approaches, advantages, and underlying reasons for adopting psychometrics in AI evaluation.
arXiv Detail & Related papers (2023-06-18T09:54:33Z) - The Meta-Evaluation Problem in Explainable AI: Identifying Reliable
Estimators with MetaQuantus [10.135749005469686]
One of the unsolved challenges in the field of Explainable AI (XAI) is determining how to most reliably estimate the quality of an explanation method.
We address this issue through a meta-evaluation of different quality estimators in XAI.
Our novel framework, MetaQuantus, analyses two complementary performance characteristics of a quality estimator.
arXiv Detail & Related papers (2023-02-14T18:59:02Z) - Faithfulness in Natural Language Generation: A Systematic Survey of
Analysis, Evaluation and Optimization Methods [48.47413103662829]
Natural Language Generation (NLG) has made great progress in recent years due to the development of deep learning techniques such as pre-trained language models.
However, the faithfulness problem that the generated text usually contains unfaithful or non-factual information has become the biggest challenge.
arXiv Detail & Related papers (2022-03-10T08:28:32Z) - Image Quality Assessment in the Modern Age [53.19271326110551]
This tutorial provides the audience with the basic theories, methodologies, and current progresses of image quality assessment (IQA)
We will first revisit several subjective quality assessment methodologies, with emphasis on how to properly select visual stimuli.
Both hand-engineered and (deep) learning-based methods will be covered.
arXiv Detail & Related papers (2021-10-19T02:38:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.