Evaluation Framework for AI Systems in "the Wild"
- URL: http://arxiv.org/abs/2504.16778v2
- Date: Mon, 28 Apr 2025 15:12:12 GMT
- Title: Evaluation Framework for AI Systems in "the Wild"
- Authors: Sarah Jabbour, Trenton Chang, Anindya Das Antar, Joseph Peper, Insu Jang, Jiachen Liu, Jae-Won Chung, Shiqi He, Michael Wellman, Bryan Goodman, Elizabeth Bondi-Kelly, Kevin Samy, Rada Mihalcea, Mosharaf Chowdhury, David Jurgens, Lu Wang,
- Abstract summary: Generative AI (GenAI) models have become vital across industries, yet current evaluation methods have not adapted to their widespread use.<n>Traditional evaluations often rely on benchmarks and fixed datasets, frequently failing to reflect real-world performance.<n>This white paper proposes a comprehensive framework for how we should evaluate real-world GenAI systems.
- Score: 37.48117853114386
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative AI (GenAI) models have become vital across industries, yet current evaluation methods have not adapted to their widespread use. Traditional evaluations often rely on benchmarks and fixed datasets, frequently failing to reflect real-world performance, which creates a gap between lab-tested outcomes and practical applications. This white paper proposes a comprehensive framework for how we should evaluate real-world GenAI systems, emphasizing diverse, evolving inputs and holistic, dynamic, and ongoing assessment approaches. The paper offers guidance for practitioners on how to design evaluation methods that accurately reflect real-time capabilities, and provides policymakers with recommendations for crafting GenAI policies focused on societal impacts, rather than fixed performance numbers or parameter sizes. We advocate for holistic frameworks that integrate performance, fairness, and ethics and the use of continuous, outcome-oriented methods that combine human and automated assessments while also being transparent to foster trust among stakeholders. Implementing these strategies ensures GenAI models are not only technically proficient but also ethically responsible and impactful.
Related papers
- Position: Bayesian Statistics Facilitates Stakeholder Participation in Evaluation of Generative AI [0.0]
The evaluation of Generative AI (GenAI) systems plays a critical role in public policy and decision-making.<n>Existing methods are often limited by reliance on benchmark-driven, point-estimate comparisons.<n>This paper argues for the use of Bayesian statistics as a principled framework to address these challenges.
arXiv Detail & Related papers (2025-04-21T16:31:15Z) - AILuminate: Introducing v1.0 of the AI Risk and Reliability Benchmark from MLCommons [62.374792825813394]
This paper introduces AILuminate v1.0, the first comprehensive industry-standard benchmark for assessing AI-product risk and reliability.<n>The benchmark evaluates an AI system's resistance to prompts designed to elicit dangerous, illegal, or undesirable behavior in 12 hazard categories.
arXiv Detail & Related papers (2025-02-19T05:58:52Z) - Can We Trust AI Benchmarks? An Interdisciplinary Review of Current Issues in AI Evaluation [2.2241228857601727]
This paper presents an interdisciplinary meta-review of about 100 studies that discuss shortcomings in quantitative benchmarking practices.<n>It brings together many fine-grained issues in the design and application of benchmarks with broader sociotechnical issues.<n>Our review also highlights a series of systemic flaws in current practices, such as misaligned incentives, construct validity issues, unknown unknowns, and problems with the gaming of benchmark results.
arXiv Detail & Related papers (2025-02-10T15:25:06Z) - A Unified Framework for Evaluating the Effectiveness and Enhancing the Transparency of Explainable AI Methods in Real-World Applications [2.0681376988193843]
"Black box" characteristic of AI models constrains interpretability, transparency, and reliability.<n>This study presents a unified XAI evaluation framework to evaluate correctness, interpretability, robustness, fairness, and completeness of explanations generated by AI models.
arXiv Detail & Related papers (2024-12-05T05:30:10Z) - A Shared Standard for Valid Measurement of Generative AI Systems' Capabilities, Risks, and Impacts [38.66213773948168]
The valid measurement of generative AI (GenAI) systems' capabilities, risks, and impacts forms the bedrock of our ability to evaluate these systems.<n>We introduce a shared standard for valid measurement that helps place many of the disparate-seeming evaluation practices in use today on a common footing.
arXiv Detail & Related papers (2024-12-02T19:50:00Z) - Evaluating Generative AI-Enhanced Content: A Conceptual Framework Using Qualitative, Quantitative, and Mixed-Methods Approaches [0.0]
Generative AI (GenAI) has revolutionized content generation, offering transformative capabilities for improving language coherence, readability, and overall quality.<n>This manuscript explores the application of qualitative, quantitative, and mixed-methods research approaches to evaluate the performance of GenAI models in enhancing scientific writing.
arXiv Detail & Related papers (2024-11-26T23:34:07Z) - A Survey on All-in-One Image Restoration: Taxonomy, Evaluation and Future Trends [67.43992456058541]
Image restoration (IR) refers to the process of improving visual quality of images while removing degradation, such as noise, blur, weather effects, and so on.
Traditional IR methods typically target specific types of degradation, which limits their effectiveness in real-world scenarios with complex distortions.
The all-in-one image restoration (AiOIR) paradigm has emerged, offering a unified framework that adeptly addresses multiple degradation types.
arXiv Detail & Related papers (2024-10-19T11:11:09Z) - From Static Benchmarks to Adaptive Testing: Psychometrics in AI Evaluation [60.14902811624433]
We discuss a paradigm shift from static evaluation methods to adaptive testing.
This involves estimating the characteristics and value of each test item in the benchmark and dynamically adjusting items in real-time.
We analyze the current approaches, advantages, and underlying reasons for adopting psychometrics in AI evaluation.
arXiv Detail & Related papers (2023-06-18T09:54:33Z) - Rethinking Model Evaluation as Narrowing the Socio-Technical Gap [47.632123167141245]
We argue that model evaluation practices must take on a critical task to cope with the challenges and responsibilities brought by this homogenization.
We urge the community to develop evaluation methods based on real-world contexts and human requirements.
arXiv Detail & Related papers (2023-06-01T00:01:43Z) - Towards Automatic Evaluation of Dialog Systems: A Model-Free Off-Policy
Evaluation Approach [84.02388020258141]
We propose a new framework named ENIGMA for estimating human evaluation scores based on off-policy evaluation in reinforcement learning.
ENIGMA only requires a handful of pre-collected experience data, and therefore does not involve human interaction with the target policy during the evaluation.
Our experiments show that ENIGMA significantly outperforms existing methods in terms of correlation with human evaluation scores.
arXiv Detail & Related papers (2021-02-20T03:29:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.