KRAIL: A Knowledge-Driven Framework for Base Human Reliability Analysis Integrating IDHEAS and Large Language Models
- URL: http://arxiv.org/abs/2412.18627v1
- Date: Fri, 20 Dec 2024 06:21:34 GMT
- Title: KRAIL: A Knowledge-Driven Framework for Base Human Reliability Analysis Integrating IDHEAS and Large Language Models
- Authors: Xingyu Xiao, Peng Chen, Ben Qi, Hongru Zhao, Jingang Liang, Jiejuan Tong, Haitao Wang,
- Abstract summary: This paper introduces a novel two-stage framework for knowledge-driven reliability analysis, integrating IDHEAS and LLMs (KRAIL)
Inspired by the success of large language models (LLMs) in natural language processing, this paper introduces a novel two-stage framework for knowledge-driven reliability analysis.
- Score: 2.7378790256389047
- License:
- Abstract: Human reliability analysis (HRA) is crucial for evaluating and improving the safety of complex systems. Recent efforts have focused on estimating human error probability (HEP), but existing methods often rely heavily on expert knowledge,which can be subjective and time-consuming. Inspired by the success of large language models (LLMs) in natural language processing, this paper introduces a novel two-stage framework for knowledge-driven reliability analysis, integrating IDHEAS and LLMs (KRAIL). This innovative framework enables the semi-automated computation of base HEP values. Additionally, knowledge graphs are utilized as a form of retrieval-augmented generation (RAG) for enhancing the framework' s capability to retrieve and process relevant data efficiently. Experiments are systematically conducted and evaluated on authoritative datasets of human reliability. The experimental results of the proposed methodology demonstrate its superior performance on base HEP estimation under partial information for reliability assessment.
Related papers
- ReLearn: Unlearning via Learning for Large Language Models [64.2802606302194]
We propose ReLearn, a data augmentation and fine-tuning pipeline for effective unlearning.
This framework introduces Knowledge Forgetting Rate (KFR) and Knowledge Retention Rate (KRR) to measure knowledge-level preservation.
Our experiments show that ReLearn successfully achieves targeted forgetting while preserving high-quality output.
arXiv Detail & Related papers (2025-02-16T16:31:00Z) - Self-Improvement in Language Models: The Sharpening Mechanism [70.9248553790022]
We offer a new perspective on the capabilities of self-improvement through a lens we refer to as sharpening.
Motivated by the observation that language models are often better at verifying response quality than they are at generating correct responses, we formalize self-improvement as using the model itself as a verifier during post-training.
We analyze two natural families of self-improvement algorithms based on SFT and RLHF.
arXiv Detail & Related papers (2024-12-02T20:24:17Z) - Bi-Factorial Preference Optimization: Balancing Safety-Helpfulness in Language Models [94.39278422567955]
Fine-tuning large language models (LLMs) on human preferences has proven successful in enhancing their capabilities.
However, ensuring the safety of LLMs during the fine-tuning remains a critical concern.
We propose a supervised learning framework called Bi-Factorial Preference Optimization (BFPO) to address this issue.
arXiv Detail & Related papers (2024-08-27T17:31:21Z) - Semi-Supervised Multi-Task Learning Based Framework for Power System Security Assessment [0.0]
This paper develops a novel machine learning-based framework using Semi-Supervised Multi-Task Learning (SS-MTL) for power system dynamic security assessment.
The learning algorithm underlying the proposed framework integrates conditional masked encoders and employs multi-task learning for classification-aware feature representation.
Various experiments on the IEEE 68-bus system were conducted to validate the proposed method.
arXiv Detail & Related papers (2024-07-11T22:42:53Z) - Word-Level ASR Quality Estimation for Efficient Corpus Sampling and
Post-Editing through Analyzing Attentions of a Reference-Free Metric [5.592917884093537]
The potential of quality estimation (QE) metrics is introduced and evaluated as a novel tool to enhance explainable artificial intelligence (XAI) in ASR systems.
The capabilities of the NoRefER metric are explored in identifying word-level errors to aid post-editors in refining ASR hypotheses.
arXiv Detail & Related papers (2024-01-20T16:48:55Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - Sample Complexity of Preference-Based Nonparametric Off-Policy
Evaluation with Deep Networks [58.469818546042696]
We study the sample efficiency of OPE with human preference and establish a statistical guarantee for it.
By appropriately selecting the size of a ReLU network, we show that one can leverage any low-dimensional manifold structure in the Markov decision process.
arXiv Detail & Related papers (2023-10-16T16:27:06Z) - Physics Inspired Hybrid Attention for SAR Target Recognition [61.01086031364307]
We propose a physics inspired hybrid attention (PIHA) mechanism and the once-for-all (OFA) evaluation protocol to address the issues.
PIHA leverages the high-level semantics of physical information to activate and guide the feature group aware of local semantics of target.
Our method outperforms other state-of-the-art approaches in 12 test scenarios with same ASC parameters.
arXiv Detail & Related papers (2023-09-27T14:39:41Z) - Leveraging Knowledge and Reinforcement Learning for Enhanced Reliability
of Language Models [10.10140327060947]
We explore a knowledge-guided LM ensembling approach that leverages reinforcement learning to integrate knowledge from ConceptNet and Wikipedia as knowledge graph embeddings.
This approach mimics human annotators resorting to external knowledge to compensate for information deficits in the datasets.
Across nine GLUE datasets, our research shows that ensembling strengthens reliability and accuracy scores, outperforming state of the art.
arXiv Detail & Related papers (2023-08-25T16:11:08Z) - Making Machine Learning Datasets and Models FAIR for HPC: A Methodology
and Case Study [0.0]
The FAIR Guiding Principles aim to improve the findability, accessibility, interoperability, and reusability of digital content by making them both human and machine actionable.
These principles have not yet been broadly adopted in the domain of machine learning-based program analyses and optimizations for High-Performance Computing.
We design a methodology to make HPC datasets and machine learning models FAIR after investigating existing FAIRness assessment and improvement techniques.
arXiv Detail & Related papers (2022-11-03T18:45:46Z) - Neural Network Repair with Reachability Analysis [10.384532888747993]
Safety is a critical concern for the next generation of autonomy that is likely to rely heavily on deep neural networks for perception and control.
This research proposes a framework to repair unsafe DNNs in safety-critical systems with reachability analysis.
arXiv Detail & Related papers (2021-08-09T17:56:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.