Graph Neural Network for Cerebral Blood Flow Prediction With Clinical Datasets
- URL: http://arxiv.org/abs/2411.17971v1
- Date: Wed, 27 Nov 2024 01:01:37 GMT
- Title: Graph Neural Network for Cerebral Blood Flow Prediction With Clinical Datasets
- Authors: Seungyeon Kim, Wheesung Lee, Sung-Ho Ahn, Do-Eun Lee, Tae-Rin Lee,
- Abstract summary: This paper proposes a graph neural network (GNN) to predict blood flow and pressure in previously unseen cerebral vascular network structures.
The GNN was developed using clinical datasets from patients with stenosis, featuring complex and abnormal vascular geometries.
- Score: 4.346588763979967
- License:
- Abstract: Accurate prediction of cerebral blood flow is essential for the diagnosis and treatment of cerebrovascular diseases. Traditional computational methods, however, often incur significant computational costs, limiting their practicality in real-time clinical applications. This paper proposes a graph neural network (GNN) to predict blood flow and pressure in previously unseen cerebral vascular network structures that were not included in training data. The GNN was developed using clinical datasets from patients with stenosis, featuring complex and abnormal vascular geometries. Additionally, the GNN model was trained on data incorporating a wide range of inflow conditions, vessel topologies, and network connectivities to enhance its generalization capability. The approach achieved Pearson's correlation coefficients of 0.727 for pressure and 0.824 for flow rate, with sufficient training data. These findings demonstrate the potential of the GNN for real-time cerebrovascular diagnostics, particularly in handling intricate and pathological vascular networks.
Related papers
- The Identification and Categorization of Anemia Through Artificial Neural Networks: A Comparative Analysis of Three Models [0.0]
This paper presents different neural network-based algorithms for diagnosing and classifying Anemia.
The proposed neural network features nine inputs (age, gender, RBC, HGB, HCT, MCV, MCH, MCHC, WBCs) and one output.
The simulation outcomes for diverse patients demonstrate that the suggested artificial neural network rapidly and accurately detects the presence of the disease.
arXiv Detail & Related papers (2024-04-06T17:37:45Z) - Graph data modelling for outcome prediction in oropharyngeal cancer
patients [38.37247384790338]
Graph neural networks (GNNs) are becoming increasingly popular in the medical domain for the tasks of disease classification and outcome prediction.
We propose a patient hypergraph network (PHGN) which has been investigated in an inductive learning setup for binary outcome prediction in oropharyngeal cancer (OPC) patients.
arXiv Detail & Related papers (2023-10-04T16:09:35Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - PTGB: Pre-Train Graph Neural Networks for Brain Network Analysis [39.16619345610152]
We propose PTGB, a GNN pre-training framework that captures intrinsic brain network structures, regardless of clinical outcomes, and is easily adaptable to various downstream tasks.
PTGB comprises two key components: (1) an unsupervised pre-training technique designed specifically for brain networks, which enables learning from large-scale datasets without task-specific labels; (2) a data-driven parcellation atlas mapping pipeline that facilitates knowledge transfer across datasets with different ROI systems.
arXiv Detail & Related papers (2023-05-20T21:07:47Z) - Transferability of coVariance Neural Networks and Application to
Interpretable Brain Age Prediction using Anatomical Features [119.45320143101381]
Graph convolutional networks (GCN) leverage topology-driven graph convolutional operations to combine information across the graph for inference tasks.
We have studied GCNs with covariance matrices as graphs in the form of coVariance neural networks (VNNs)
VNNs inherit the scale-free data processing architecture from GCNs and here, we show that VNNs exhibit transferability of performance over datasets whose covariance matrices converge to a limit object.
arXiv Detail & Related papers (2023-05-02T22:15:54Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Machine-Learning Identification of Hemodynamics in Coronary Arteries in
the Presence of Stenosis [0.0]
An artificial neural network (ANN) model is trained using synthetic data to predict the pressure and velocity within the arterial network.
The efficiency of the model was verified using three real geometries of LAD's vessels.
arXiv Detail & Related papers (2021-11-02T23:51:06Z) - Neural Network-derived perfusion maps: a Model-free approach to computed
tomography perfusion in patients with acute ischemic stroke [4.925222726301579]
Convolutional Neural Network (CNN) can generate clinically relevant parametric maps from CT perfusion data.
Our CNN-based approach generated clinically relevant perfusion maps that are comparable to state-of-the-art perfusion analysis methods.
arXiv Detail & Related papers (2021-01-15T07:11:02Z) - Domain Generalization for Medical Imaging Classification with
Linear-Dependency Regularization [59.5104563755095]
We introduce a simple but effective approach to improve the generalization capability of deep neural networks in the field of medical imaging classification.
Motivated by the observation that the domain variability of the medical images is to some extent compact, we propose to learn a representative feature space through variational encoding.
arXiv Detail & Related papers (2020-09-27T12:30:30Z) - Finding Patient Zero: Learning Contagion Source with Graph Neural
Networks [67.3415507211942]
Locating the source of an epidemic can provide critical insights into the infection's transmission course.
Existing methods use graph-theoretic measures and expensive message-passing algorithms.
We revisit this problem using graph neural networks (GNNs) to learn P0.
arXiv Detail & Related papers (2020-06-21T21:12:44Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
We propose a novel learning framework for inference and estimation problems of diffusion on networks.
Our framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities.
Our approach is versatile and robust to variations of the underlying diffusion network models.
arXiv Detail & Related papers (2020-06-16T18:45:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.