論文の概要: The importance of visual modelling languages in generative software engineering
- arxiv url: http://arxiv.org/abs/2411.17976v3
- Date: Mon, 13 Jan 2025 17:42:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:29:27.412376
- Title: The importance of visual modelling languages in generative software engineering
- Title(参考訳): 生成ソフトウェア工学におけるビジュアルモデリング言語の重要性
- Authors: Roberto Rossi,
- Abstract要約: GPT-4は、単に自然言語ではなく、画像とテキストの入力を受け入れる。
私たちの知る限りでは、マルチモーダルGPTを通じてソフトウェアエンジニアリングタスクが実行される同様のユースケースを調査する研究は他にありません。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Multimodal GPTs represent a watershed in the interplay between Software Engineering and Generative Artificial Intelligence. GPT-4 accepts image and text inputs, rather than simply natural language. We investigate relevant use cases stemming from these enhanced capabilities of GPT-4. To the best of our knowledge, no other work has investigated similar use cases involving Software Engineering tasks carried out via multimodal GPTs prompted with a mix of diagrams and natural language.
- Abstract(参考訳): マルチモーダルGPT(マルチモーダルGPT)は、ソフトウェア工学と生成人工知能(Generative Artificial Intelligence)の相互作用における水源である。
GPT-4は、単に自然言語ではなく、画像とテキストの入力を受け入れる。
GPT-4の高機能化にともなうユースケースについて検討した。
私たちの知る限りでは、図と自然言語の混在によって引き起こされるマルチモーダルGPTを通じてソフトウェアエンジニアリングタスクが実行される同様のユースケースを調査する研究は他にありません。
関連論文リスト
- What Is Missing in Multilingual Visual Reasoning and How to Fix It [64.47951359580556]
視覚的推論タスクを用いてNLPモデルの多言語・多モーダル機能を評価する。
GPT-4Vのようなプロプライエタリなシステムは、現在このタスクで最高のパフォーマンスを得るが、オープンモデルは比較に遅れている。
我々の介入はゼロショット設定でこのタスク上で最高のオープンパフォーマンスを実現し、オープンモデルLLaVAを13.4%向上させる。
論文 参考訳(メタデータ) (2024-03-03T05:45:27Z) - Comparing large language models and human programmers for generating programming code [0.0]
GPT-4は、Gemini UltraやClaude 2など、他の大きな言語モデルよりも大幅に優れている。
この研究で評価されたほとんどのLeetCodeとGeeksforGeeksのコーディングコンテストにおいて、最適のプロンプト戦略を採用するGPT-4は、人間の参加者の85%を上回っている。
論文 参考訳(メタデータ) (2024-03-01T14:43:06Z) - GPT-4 as an interface between researchers and computational software:
improving usability and reproducibility [44.99833362998488]
分子動力学シミュレーションに広く用いられているソフトウェアに焦点をあてる。
英語のタスク記述から GPT-4 で生成された入力ファイルの有用性を定量化する。
GPT-4は,比較的簡単なタスクに対して,正しい入力ファイルを生成することができる。
さらに、GPT-4の入力ファイルからの計算タスクの記述は、ステップバイステップ命令の詳細なセットから、出版物に適した要約記述まで調整することができる。
論文 参考訳(メタデータ) (2023-10-04T14:25:39Z) - The Dawn of LMMs: Preliminary Explorations with GPT-4V(ision) [121.42924593374127]
我々は,最新のモデルであるGPT-4Vを分析し,LMMの理解を深める。
GPT-4Vは、任意にインターリーブされたマルチモーダル入力を処理するという前例のない能力により、強力なマルチモーダルジェネラリストシステムとなっている。
GPT-4Vの、入力画像に描かれた視覚マーカーを理解するユニークな能力は、新しい人間とコンピュータの相互作用方法をもたらす。
論文 参考訳(メタデータ) (2023-09-29T17:34:51Z) - Generative Pre-trained Transformer: A Comprehensive Review on Enabling
Technologies, Potential Applications, Emerging Challenges, and Future
Directions [11.959434388955787]
Generative Pre-trained Transformer (GPT)は、自然言語処理の分野における顕著なブレークスルーである。
GPTは自然言語処理タスク用に設計されたディープニューラルネットワークであるTransformerアーキテクチャに基づいている。
論文 参考訳(メタデータ) (2023-05-11T19:20:38Z) - Gpt-4: A Review on Advancements and Opportunities in Natural Language
Processing [0.0]
Generative Pre-trained Transformer 4 (GPT-4) は、OpenAIが開発したGPTシリーズの第4世代言語モデルである。
GPT-4は、GPT-3よりもモデルサイズが大きく(1兆ドル以上)、多言語能力、文脈理解の改善、推論能力が優れている。
GPT-4の潜在的な応用には、チャットボット、パーソナルアシスタント、言語翻訳、テキスト要約、質問応答などがある。
論文 参考訳(メタデータ) (2023-05-04T22:46:43Z) - Visual Instruction Tuning [79.70923292053097]
本稿では,言語のみの GPT-4 を用いてマルチモーダルな言語イメージ命令追跡データを生成する試みについて紹介する。
このようなデータに対して,LLaVA: Large Language and Vision Assistantを導入する。
科学QAを微調整すると、LLaVAとGPT-4の相乗効果は92.53%の新しい最先端精度を達成する。
論文 参考訳(メタデータ) (2023-04-17T17:59:25Z) - ChatGPT Beyond English: Towards a Comprehensive Evaluation of Large
Language Models in Multilingual Learning [70.57126720079971]
大規模言語モデル(LLM)は、自然言語処理(NLP)において最も重要なブレークスルーとして登場した。
本稿では,高,中,低,低リソースの37言語を対象として,ChatGPTを7つのタスクで評価する。
従来のモデルと比較すると,様々なNLPタスクや言語に対するChatGPTの性能は低下していた。
論文 参考訳(メタデータ) (2023-04-12T05:08:52Z) - Leveraging Language to Learn Program Abstractions and Search Heuristics [66.28391181268645]
LAPS(Language for Abstraction and Program Search)は、自然言語アノテーションを用いて、ライブラリとニューラルネットワークによる合成のための検索モデルの共同学習をガイドする手法である。
最先端のライブラリ学習システム(DreamCoder)に統合されると、LAPSは高品質なライブラリを生成し、検索効率と一般化を改善する。
論文 参考訳(メタデータ) (2021-06-18T15:08:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。