論文の概要: Dual-Level Boost Network for Long-Tail Prohibited Items Detection in X-ray Security Inspection
- arxiv url: http://arxiv.org/abs/2411.18078v1
- Date: Wed, 27 Nov 2024 06:13:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:26:45.124233
- Title: Dual-Level Boost Network for Long-Tail Prohibited Items Detection in X-ray Security Inspection
- Title(参考訳): X線セキュリティ検査における長期禁止項目検出のためのデュアルレベルブーストネットワーク
- Authors: Renshuai Tao, Haoyu Wang, Wei Wang, Yunchao Wei, Yao Zhao,
- Abstract要約: X線検査における禁止項目の長期分布は,検出モデルにとって大きな課題となる。
我々は,X線セキュリティスクリーニングにおけるこれらの課題を克服するために,DBNet(Dual-level Boost Network)を提案する。
提案手法では,(1) X線画像の特徴にインスパイアされた,ポアソンブレンディングを用いた特定のデータ拡張戦略を導入し,データ不均衡を効果的に軽減できるレアアイテムのリアルな合成例を生成する。
- 参考スコア(独自算出の注目度): 81.11400642272976
- License:
- Abstract: The detection of prohibited items in X-ray security inspections is vital for ensuring public safety. However, the long-tail distribution of item categories, where certain prohibited items are far less common, poses a big challenge for detection models, as rare categories often lack sufficient training data. Existing methods struggle to classify these rare items accurately due to this imbalance. In this paper, we propose a Dual-level Boost Network (DBNet) specifically designed to overcome these challenges in X-ray security screening. Our approach introduces two key innovations: (1) a specific data augmentation strategy employing Poisson blending, inspired by the characteristics of X-ray images, to generate realistic synthetic instances of rare items which can effectively mitigate data imbalance; and (2) a context-aware feature enhancement module that captures the spatial and semantic interactions between objects and their surroundings, enhancing classification accuracy for underrepresented categories. Extensive experimental results demonstrate that DBNet improves detection performance for tail categories, outperforming sota methods in X-ray security inspection scenarios by a large margin 17.2%, thereby ensuring enhanced public safety.
- Abstract(参考訳): 公安の確保には,X線検査における禁止項目の検出が不可欠である。
しかし、一部の禁止項目があまり一般的でないアイテムカテゴリーの長期分布は、稀なカテゴリーでは十分なトレーニングデータがないため、検出モデルにとって大きな課題となる。
既存の手法では、この不均衡のため、これらの稀な項目を正確に分類することが困難である。
本稿では,X線セキュリティスクリーニングにおけるこれらの課題を克服するために,DBNet(Dual-level Boost Network)を提案する。
提案手法では,(1) X線画像の特徴にインスパイアされた,ポアソンブレンディングを用いた特定のデータ拡張戦略を導入し,データ不均衡を効果的に軽減できるレアアイテムのリアルな合成例を生成する。
広範囲にわたる実験結果から,DBNetはテールカテゴリの検出性能を向上し,X線セキュリティ検査シナリオにおけるソタ法を17.2%向上させ,公衆安全の確保を図った。
関連論文リスト
- Dual-view X-ray Detection: Can AI Detect Prohibited Items from Dual-view X-ray Images like Humans? [78.26435264182763]
大規模デュアルビューX線(LDXray)を導入し,12のカテゴリで353,646個のインスタンスで構成されている。
デュアルビュー検出におけるヒューマンインテリジェンスをエミュレートするために,補助ビュー拡張ネットワーク(AENet)を提案する。
LDXrayデータセットの実験では、デュアルビュー機構が検出性能を大幅に向上することを示した。
論文 参考訳(メタデータ) (2024-11-27T06:36:20Z) - Model X-ray:Detecting Backdoored Models via Decision Boundary [62.675297418960355]
バックドア攻撃はディープニューラルネットワーク(DNN)に重大な脆弱性をもたらす
図形化された2次元(2次元)決定境界の解析に基づく新しいバックドア検出手法であるモデルX線を提案する。
提案手法は,クリーンサンプルが支配する意思決定領域とラベル分布の集中度に着目した2つの戦略を含む。
論文 参考訳(メタデータ) (2024-02-27T12:42:07Z) - Spatial-Frequency Discriminability for Revealing Adversarial Perturbations [53.279716307171604]
敵の摂動に対するディープニューラルネットワークの脆弱性は、コンピュータビジョンコミュニティで広く認識されている。
現在のアルゴリズムは、通常、自然および敵対的なデータの識別的分解を通じて、敵のパターンを検出する。
空間周波数Krawtchouk分解に基づく識別検出器を提案する。
論文 参考訳(メタデータ) (2023-05-18T10:18:59Z) - Illicit item detection in X-ray images for security applications [7.519872646378835]
X線画像におけるコントラバンドアイテムの自動検出は、公共の安全を著しく向上させる。
ディープニューラルネットワーク(DNN)に依存する現代のコンピュータビジョンアルゴリズムは、このタスクを遂行できることを証明している。
本稿では,X線解析領域におけるそのようなアルゴリズムの2倍の改良を提案する。
論文 参考訳(メタデータ) (2023-05-03T07:28:05Z) - Joint Sub-component Level Segmentation and Classification for Anomaly
Detection within Dual-Energy X-Ray Security Imagery [14.785070524184649]
この性能は、散在したX線バッグセキュリティ画像のデータセット上で評価される。
提案手法は, 異常検出タスクに対して, 99%の真正, 5%の偽正を達成できる。
論文 参考訳(メタデータ) (2022-10-29T00:44:50Z) - Towards Real-world X-ray Security Inspection: A High-Quality Benchmark
and Lateral Inhibition Module for Prohibited Items Detection [37.66855218659698]
まず,8つのカテゴリの102,928個の共通禁止項目を含む,高品質なX線(HiXray)セキュリティ検査画像データセットを提案する。
正確な禁止項目検出のために,不適切な情報を無視することで,人間がこれらの項目を認識するという事実に触発された横方向抑制モジュール(LIM)を提案する。
論文 参考訳(メタデータ) (2021-08-23T03:59:23Z) - Towards Real-World Prohibited Item Detection: A Large-Scale X-ray
Benchmark [53.9819155669618]
本稿では,PIDrayと命名された大規模データセットについて述べる。
大量の努力を払って、私たちのデータセットには、高品質な注釈付きセグメンテーションマスクとバウンディングボックスを備えた47,677ドルのX線画像に、禁止アイテムの12ドルカテゴリが含まれています。
提案手法は最先端の手法に対して,特に故意に隠された項目を検出するために好適に機能する。
論文 参考訳(メタデータ) (2021-08-16T11:14:16Z) - Over-sampling De-occlusion Attention Network for Prohibited Items
Detection in Noisy X-ray Images [35.35752470993847]
セキュリティ検査は、スーツケースの個人持ち物のX線スキャンです。
一般的な画像認識データセットを通じてトレーニングされた従来のCNNベースのモデルは、このシナリオで十分なパフォーマンスを達成できない。
新規な脱閉塞注意モジュールと新しいオーバーサンプリングトレーニング戦略からなるオーバーサンプリング脱閉塞注意ネットワーク(DOAM-O)を提案する。
論文 参考訳(メタデータ) (2021-03-01T07:17:37Z) - Occluded Prohibited Items Detection: an X-ray Security Inspection
Benchmark and De-occlusion Attention Module [50.75589128518707]
我々はOPIXrayというセキュリティ検査のための最初の高品質なオブジェクト検出データセットをコントリビュートする。
OPIXrayは、空港のプロの検査官が手動で注記した「カッター」に焦点をあてた。
本稿では,プラグイン・アンド・プレイモジュールであるデオクルージョン・アテンション・モジュール(DOAM)を提案する。
論文 参考訳(メタデータ) (2020-04-18T16:10:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。