Machine Unlearning reveals that the Gender-based Violence Victim Condition can be detected from Speech in a Speaker-Agnostic Setting
- URL: http://arxiv.org/abs/2411.18177v1
- Date: Wed, 27 Nov 2024 09:53:53 GMT
- Title: Machine Unlearning reveals that the Gender-based Violence Victim Condition can be detected from Speech in a Speaker-Agnostic Setting
- Authors: Emma Reyner-Fuentes, Esther Rituerto-Gonzalez, Carmen Pelaez-Moreno,
- Abstract summary: This study addresses the critical issue of gender-based violence's (GBV) impact on women's mental health.
GBV often results in long-lasting adverse effects for the victims, including anxiety, depression, post-traumatic stress disorder (PTSD)
Our research presents a novel approach to speaker-agnostic detection of the gender-based violence victim condition (GBVVC)
- Score: 0.0
- License:
- Abstract: This study addresses the critical issue of gender-based violence's (GBV) impact on women's mental health. GBV, encompassing physical and sexual aggression, often results in long-lasting adverse effects for the victims, including anxiety, depression, post-traumatic stress disorder (PTSD), and substance abuse. Artificial Intelligence (AI)-based speech technologies have proven valuable for mental health assessments. However, these technologies experience performance challenges when confronted with speakers whose data has not been used for training. Our research presents a novel approach to speaker-agnostic detection of the gender-based violence victim condition (GBVVC), focusing on the development of robust AI models capable of generalization across diverse speakers. Leveraging advanced deep learning models and domain-adversarial training techniques, we minimize speaker identity's influence, achieving a 26.95% relative reduction in speaker identification ability while enhancing the GBVVC detection by a 6.37% relative improvement in the accuracy. This shows that models can focus on discriminative paralinguistic biomarkers that enhance the GBVVC prediction, and reduce the subject-specific traits' impact. Additionally, our model's predictions moderately correlate with pre-clinical PTSD symptoms, emphasizing the link between GBV and mental health. This work paves the way for AI-powered tools to aid mental health professionals in addressing this societal issue, offering a promising baseline for further research.
Related papers
- Towards Privacy-aware Mental Health AI Models: Advances, Challenges, and Opportunities [61.633126163190724]
Mental illness is a widespread and debilitating condition with substantial societal and personal costs.
Recent advances in Artificial Intelligence (AI) hold great potential for recognizing and addressing conditions such as depression, anxiety disorder, bipolar disorder, schizophrenia, and post-traumatic stress disorder.
Privacy concerns, including the risk of sensitive data leakage from datasets and trained models, remain a critical barrier to deploying these AI systems in real-world clinical settings.
arXiv Detail & Related papers (2025-02-01T15:10:02Z) - CBT-Bench: Evaluating Large Language Models on Assisting Cognitive Behavior Therapy [67.23830698947637]
We propose a new benchmark, CBT-BENCH, for the systematic evaluation of cognitive behavioral therapy (CBT) assistance.
We include three levels of tasks in CBT-BENCH: I: Basic CBT knowledge acquisition, with the task of multiple-choice questions; II: Cognitive model understanding, with the tasks of cognitive distortion classification, primary core belief classification, and fine-grained core belief classification; III: Therapeutic response generation, with the task of generating responses to patient speech in CBT therapy sessions.
Experimental results indicate that while LLMs perform well in reciting CBT knowledge, they fall short in complex real-world scenarios
arXiv Detail & Related papers (2024-10-17T04:52:57Z) - AI-Driven Early Mental Health Screening: Analyzing Selfies of Pregnant Women [32.514036618021244]
Major Depressive Disorder and anxiety disorders affect millions globally, contributing significantly to the burden of mental health issues.
Early screening is crucial for effective intervention, as timely identification of mental health issues can significantly improve treatment outcomes.
This study explores the potential of AI models for ubiquitous depression-anxiety screening given face-centric selfies.
arXiv Detail & Related papers (2024-10-07T19:34:25Z) - The Pitfalls and Promise of Conformal Inference Under Adversarial Attacks [90.52808174102157]
In safety-critical applications such as medical imaging and autonomous driving, it is imperative to maintain both high adversarial robustness to protect against potential adversarial attacks.
A notable knowledge gap remains concerning the uncertainty inherent in adversarially trained models.
This study investigates the uncertainty of deep learning models by examining the performance of conformal prediction (CP) in the context of standard adversarial attacks.
arXiv Detail & Related papers (2024-05-14T18:05:19Z) - Empowering Psychotherapy with Large Language Models: Cognitive
Distortion Detection through Diagnosis of Thought Prompting [82.64015366154884]
We study the task of cognitive distortion detection and propose the Diagnosis of Thought (DoT) prompting.
DoT performs diagnosis on the patient's speech via three stages: subjectivity assessment to separate the facts and the thoughts; contrastive reasoning to elicit the reasoning processes supporting and contradicting the thoughts; and schema analysis to summarize the cognition schemas.
Experiments demonstrate that DoT obtains significant improvements over ChatGPT for cognitive distortion detection, while generating high-quality rationales approved by human experts.
arXiv Detail & Related papers (2023-10-11T02:47:21Z) - Beyond Neural-on-Neural Approaches to Speaker Gender Protection [2.741893145546753]
We show the importance of testing gender inference attacks based on speech features.
We argue that researchers should use speech features to gain insight into how protective modifications change the speech signal.
arXiv Detail & Related papers (2023-06-30T14:26:49Z) - Harnessing the Power of Hugging Face Transformers for Predicting Mental
Health Disorders in Social Networks [0.0]
This study explores how user-generated data can be used to predict mental disorder symptoms.
Our study compares four different BERT models of Hugging Face with standard machine learning techniques.
New models outperform the previous approach with an accuracy rate of up to 97%.
arXiv Detail & Related papers (2023-06-29T12:25:19Z) - DEPAC: a Corpus for Depression and Anxiety Detection from Speech [3.2154432166999465]
We introduce a novel mental distress analysis audio dataset DEPAC, labeled based on established thresholds on depression and anxiety screening tools.
This large dataset comprises multiple speech tasks per individual, as well as relevant demographic information.
We present a feature set consisting of hand-curated acoustic and linguistic features, which were found effective in identifying signs of mental illnesses in human speech.
arXiv Detail & Related papers (2023-06-20T12:21:06Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
Alzheimer's disease (AD) is particularly prominent in older adults.
Recent advances in pre-trained models motivate AD detection modeling to shift from low-level features to high-level representations.
This paper presents several efficient methods to extract better AD-related cues from high-level acoustic and linguistic features.
arXiv Detail & Related papers (2023-03-14T16:03:28Z) - Bias Reducing Multitask Learning on Mental Health Prediction [18.32551434711739]
There has been an increase in research in developing machine learning models for mental health detection or prediction.
In this work, we aim to perform a fairness analysis and implement a multi-task learning based bias mitigation method on anxiety prediction models.
Our analysis showed that our anxiety prediction base model introduced some bias with regards to age, income, ethnicity, and whether a participant is born in the U.S. or not.
arXiv Detail & Related papers (2022-08-07T02:28:32Z) - Investigation of Data Augmentation Techniques for Disordered Speech
Recognition [69.50670302435174]
This paper investigates a set of data augmentation techniques for disordered speech recognition.
Both normal and disordered speech were exploited in the augmentation process.
The final speaker adapted system constructed using the UASpeech corpus and the best augmentation approach based on speed perturbation produced up to 2.92% absolute word error rate (WER)
arXiv Detail & Related papers (2022-01-14T17:09:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.