論文の概要: Learning for Long-Horizon Planning via Neuro-Symbolic Abductive Imitation
- arxiv url: http://arxiv.org/abs/2411.18201v1
- Date: Wed, 27 Nov 2024 10:26:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:28:03.651497
- Title: Learning for Long-Horizon Planning via Neuro-Symbolic Abductive Imitation
- Title(参考訳): ニューロ・シンボリック・アブダクティブ・イミテーションによる長期計画の学習
- Authors: Jie-Jing Shao, Hao-Ran Hao, Xiao-Wen Yang, Yu-Feng Li,
- Abstract要約: データ駆動学習と記号に基づく推論を統合した新しいフレームワーク textbfABductive textbfImitation textbfLearning (ABIL) を提案する。
ABILは、原観測からシンボル空間への認識を促進するための述語候補を生成する。
実験の結果,提案手法は課題関連記号による観察をうまく理解し,模倣学習を支援することが確認できた。
- 参考スコア(独自算出の注目度): 38.72920702089471
- License:
- Abstract: Recent learning-to-imitation methods have shown promising results in planning via imitating within the observation-action space. However, their ability in open environments remains constrained, particularly in long-horizon tasks. In contrast, traditional symbolic planning excels in long-horizon tasks through logical reasoning over human-defined symbolic spaces but struggles to handle observations beyond symbolic states, such as high-dimensional visual inputs encountered in real-world scenarios. In this work, we draw inspiration from abductive learning and introduce a novel framework \textbf{AB}ductive \textbf{I}mitation \textbf{L}earning (ABIL) that integrates the benefits of data-driven learning and symbolic-based reasoning, enabling long-horizon planning. Specifically, we employ abductive reasoning to understand the demonstrations in symbolic space and design the principles of sequential consistency to resolve the conflicts between perception and reasoning. ABIL generates predicate candidates to facilitate the perception from raw observations to symbolic space without laborious predicate annotations, providing a groundwork for symbolic planning. With the symbolic understanding, we further develop a policy ensemble whose base policies are built with different logical objectives and managed through symbolic reasoning. Experiments show that our proposal successfully understands the observations with the task-relevant symbolics to assist the imitation learning. Importantly, ABIL demonstrates significantly improved data efficiency and generalization across various long-horizon tasks, highlighting it as a promising solution for long-horizon planning. Project website: \url{https://www.lamda.nju.edu.cn/shaojj/KDD25_ABIL/}.
- Abstract(参考訳): 近年の学習と想像の手法は、観察行動空間内での模倣による計画の有望な成果を示している。
しかしながら、オープン環境におけるそれらの能力は、特に長期的タスクにおいて制限されている。
対照的に、伝統的な象徴的計画法は、人間の定義した象徴的空間に対する論理的推論を通じて長い水平的タスクにおいて優れているが、現実世界のシナリオで遭遇する高次元的な視覚的入力のような象徴的状態を超えた観察を扱うのに苦労している。
本研究では、帰納的学習からインスピレーションを得て、データ駆動学習と記号に基づく推論の利点を統合し、長期計画を可能にする新しいフレームワークである \textbf{AB}ductive \textbf{I}mitation \textbf{L}earning (ABIL) を導入する。
具体的には,象徴空間における実演を理解するために帰納的推論を採用し,知覚と推論の対立を解決するために連続的な一貫性の原理を設計する。
ABILは、原観測からシンボル空間への認識を促進するための述語候補を生成する。
記号的理解により、基本方針が異なる論理的目的で構築され、記号的推論によって管理される政策アンサンブルをさらに発展させる。
実験の結果,提案手法は課題関連記号による観察をうまく理解し,模倣学習を支援することが確認できた。
重要なことは、ABILはデータ効率と様々な長期タスクの一般化を著しく改善し、長期計画のための有望なソリューションとして強調している。
プロジェクトウェブサイト: \url{https://www.lamda.nju.edu.cn/shaojj/KDD25_ABIL/}
関連論文リスト
- What Makes a Maze Look Like a Maze? [92.80800000328277]
本稿では,Deep Grounding(DSG)という,視覚的抽象化の明示的な構造化表現を活用してグラウンド化と推論を行うフレームワークを紹介する。
DSGの中核はスキーマ-依存性グラフによる抽象概念の記述で、より原始的なシンボルに分解される。
DSGは視覚言語モデルの抽象的視覚的推論性能を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2024-09-12T16:41:47Z) - Take A Step Back: Rethinking the Two Stages in Visual Reasoning [57.16394309170051]
本稿では2段階の視点で視覚的推論を再考する。
共有アナライザを使用しながら、異なるデータドメイン用の分離エンコーダによるシンボル化を実装する方が効率的である。
提案する2段階のフレームワークは,様々な視覚的推論タスクにおいて,印象的な一般化を実現する。
論文 参考訳(メタデータ) (2024-07-29T02:56:19Z) - Learning Concept-Based Causal Transition and Symbolic Reasoning for Visual Planning [36.131648635051334]
ビジュアルプランニングは、人間が望ましい目標を達成するために意思決定する方法をシミュレートする。
本稿では,解釈可能で汎用的な視覚計画フレームワークを提案する。
我々のフレームワークは、未確認のタスクトラジェクトリ、未確認のオブジェクトカテゴリ、実世界のデータに一般化できることを示します。
論文 参考訳(メタデータ) (2023-10-05T05:41:21Z) - LOGICSEG: Parsing Visual Semantics with Neural Logic Learning and
Reasoning [73.98142349171552]
LOGICSEGは、神経誘導学習と論理推論をリッチデータとシンボリック知識の両方に統合する、全体論的視覚意味論である。
ファジィ論理に基づく連続的な緩和の間、論理式はデータとニューラルな計算グラフに基礎を置いており、論理によるネットワークトレーニングを可能にする。
これらの設計によりLOGICSEGは、既存のセグメンテーションモデルに容易に統合できる汎用的でコンパクトなニューラル論理マシンとなる。
論文 参考訳(メタデータ) (2023-09-24T05:43:19Z) - Goal Space Abstraction in Hierarchical Reinforcement Learning via
Set-Based Reachability Analysis [0.5409704301731713]
本稿では,目標表現と階層的ポリシの両方を同時に学習するFeudal HRLアルゴリズムを提案する。
複雑なナビゲーションタスクに対する我々のアプローチを評価し、学習された表現が解釈可能で、転送可能であり、データ効率のよい学習結果をもたらすことを示す。
論文 参考訳(メタデータ) (2023-09-14T12:39:26Z) - Goal Space Abstraction in Hierarchical Reinforcement Learning via
Reachability Analysis [0.0]
本研究では,環境状態の集合を抽象化する創発的表現によるサブゴール発見のための発達機構を提案する。
我々は、この表現をポリシーとともに徐々に学習し、それをナビゲーションタスクで評価して、学習した表現が解釈可能であり、結果としてデータ効率が向上することを示すHRLアルゴリズムを作成する。
論文 参考訳(メタデータ) (2023-09-12T06:53:11Z) - Learning Differentiable Logic Programs for Abstract Visual Reasoning [18.82429807065658]
微分フォワード推論は、勾配に基づく機械学習パラダイムと推論を統合するために開発された。
NEUMANNはグラフベースの微分可能フォワード推論器で、メッセージをメモリ効率のよい方法で送信し、構造化プログラムを関手で処理する。
NEUMANNは視覚的推論タスクを効率的に解き、神経、象徴的、神経-象徴的ベースラインを上回ります。
論文 参考訳(メタデータ) (2023-07-03T11:02:40Z) - PALMER: Perception-Action Loop with Memory for Long-Horizon Planning [1.5469452301122177]
PALMERと呼ばれる汎用計画アルゴリズムを導入する。
Palmerは古典的なサンプリングベースの計画アルゴリズムと学習に基づく知覚表現を組み合わせる。
これにより、表現学習、記憶、強化学習、サンプリングベースの計画の間に、緊密なフィードバックループが生成される。
論文 参考訳(メタデータ) (2022-12-08T22:11:49Z) - Unsupervised Discriminative Embedding for Sub-Action Learning in Complex
Activities [54.615003524001686]
本稿では,複雑な活動における教師なしサブアクション学習の新たなアプローチを提案する。
提案手法は,視覚表現と時間表現の両方を,サブアクションを識別的に学習する潜在空間にマッピングする。
視覚-時空間埋め込みと判別的潜在概念の組み合わせにより,教師なし設定でロバストな動作表現を学習できることを示す。
論文 参考訳(メタデータ) (2021-04-30T20:07:27Z) - Interpretable Visual Reasoning via Induced Symbolic Space [75.95241948390472]
視覚的推論における概念誘導の問題,すなわち,画像に関連付けられた質問応答対から概念とその階層的関係を同定する。
我々はまず,オブジェクトレベルの視覚的特徴を持つ視覚的推論タスクを実行するために,オブジェクト指向合成注意モデル(OCCAM)という新しいフレームワークを設計する。
そこで我々は,対象の視覚的特徴と質問語の間の注意パターンから手がかりを用いて,対象と関係の概念を誘導する手法を考案した。
論文 参考訳(メタデータ) (2020-11-23T18:21:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。