Randomized-Grid Search for Hyperparameter Tuning in Decision Tree Model to Improve Performance of Cardiovascular Disease Classification
- URL: http://arxiv.org/abs/2411.18234v1
- Date: Wed, 27 Nov 2024 11:10:28 GMT
- Title: Randomized-Grid Search for Hyperparameter Tuning in Decision Tree Model to Improve Performance of Cardiovascular Disease Classification
- Authors: Abhay Kumar Pathak, Mrityunjay Chaubey, Manjari Gupta,
- Abstract summary: Heart disease classification using machine learning (ML) algorithms such as Support Vector Machine(SVM), Na"ive Bayes(NB), Decision Trees (DTs) and Random Forests (RFs) are often hindered by overfitting.<n>Grid Search, though exhaustive, but, it is computationally expensive and inefficient, particularly with high-dimensional data.<n>Rational-Grid Search, though exhaustive, but, it is computationally expensive and inefficient, particularly with high-dimensional data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Cardiovascular disease refers to any critical condition that impacts the heart. Because heart diseases can be life-threatening. Researchers are focusing on designing smart systems to accurately diagnose them based on electronic health data, with the aid of machine learning algorithms. Heart disease classification using machine learning (ML) algorithms such as Support Vector Machine(SVM), Na\"ive Bayes(NB), Decision Trees (DTs) and Random Forests (RFs) are often hindered by overfitting. These ML algorithms need extensive hyperparameter tuning. Random Search offers a faster, and, more efficient exploration of hyperparameter space, but, it may overlook optimal regions. Grid Search, though exhaustive, but, it is computationally expensive and inefficient, particularly with high-dimensional data. To address these limitations, Randomized-Grid Search, a novel hybrid optimization method is proposed that combines the global exploration strengths of Random Search with the focused, and, exhaustive search of Grid Search in the most promising regions. This hybrid approach efficiently balances exploration and exploitation. The proposed model optimizes the hyperparameter for Decision Tree model. The proposed model is applied to UCI heart disease dataset for classification. It enhances model performance, provides improved accuracy, generalization, and computational efficiency. Experimental results demonstrate that Randomized-Grid Search outperforms traditional methods by significant margins. The proposed model provides a more effective solution for machine learning applications in healthcare diagnosis.
Related papers
- Hyperparameter Optimization for Randomized Algorithms: A Case Study on Random Features [0.0]
This paper introduces a random objective function that is tailored to high-dimensions and robust to randomness in objective functions.
EKI is a gradient-free particle-based complexity that is scalable to high-dimensions and robust to randomness in objective functions.
arXiv Detail & Related papers (2024-06-30T04:15:03Z) - Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis [44.45598796591008]
Brain imaging-to-graph generation (BIGG) framework is proposed to map functional magnetic resonance imaging (fMRI) into effective connectivity for mild cognitive impairment analysis.
The hierarchical transformers in the generator are designed to estimate the noise at multiple scales.
Evaluations of the ADNI dataset demonstrate the feasibility and efficacy of the proposed model.
arXiv Detail & Related papers (2023-05-18T06:54:56Z) - OptBA: Optimizing Hyperparameters with the Bees Algorithm for Improved Medical Text Classification [0.0]
We propose OptBA to fine-tune the hyperparameters of deep learning models by leveraging the Bees Algorithm.
Experimental results demonstrate a noteworthy enhancement in accuracy with approximately 1.4%.
arXiv Detail & Related papers (2023-03-14T16:04:13Z) - Enhancing Machine Learning Model Performance with Hyper Parameter
Optimization: A Comparative Study [0.0]
One of the most critical issues in machine learning is the selection of appropriate hyper parameters for training models.
Hyper parameter optimization (HPO) is a popular topic that artificial intelligence studies have focused on recently.
In this study, classical methods, such as grid, random search and Bayesian optimization, and population-based algorithms, such as genetic algorithms and particle swarm optimization, are discussed.
arXiv Detail & Related papers (2023-02-14T10:12:10Z) - Auto-FedRL: Federated Hyperparameter Optimization for
Multi-institutional Medical Image Segmentation [48.821062916381685]
Federated learning (FL) is a distributed machine learning technique that enables collaborative model training while avoiding explicit data sharing.
In this work, we propose an efficient reinforcement learning(RL)-based federated hyperparameter optimization algorithm, termed Auto-FedRL.
The effectiveness of the proposed method is validated on a heterogeneous data split of the CIFAR-10 dataset and two real-world medical image segmentation datasets.
arXiv Detail & Related papers (2022-03-12T04:11:42Z) - Towards Robust and Automatic Hyper-Parameter Tunning [39.04604349338802]
We introduce a new class of HPO method and explore how the low-rank factorization of intermediate layers of a convolutional network can be used to define an analytical response surface.
We quantify how this surface behaves as a surrogate to model performance and can be solved using a trust-region search algorithm, which we call autoHyper.
arXiv Detail & Related papers (2021-11-28T05:27:34Z) - Genealogical Population-Based Training for Hyperparameter Optimization [1.0514231683620516]
We experimentally demonstrate that our method cuts down by 2 to 3 times the computational cost required.
Our method is search-algorithm so that the inner search routine can be any search algorithm like TPE, GP, CMA or random search.
arXiv Detail & Related papers (2021-09-30T08:49:41Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - A Population-based Hybrid Approach to Hyperparameter Optimization for
Neural Networks [0.0]
HBRKGA is a hybrid approach that combines the Biased Random Key Genetic Algorithm with a Random Walk technique to search the hyper parameter space efficiently.
Results showed that HBRKGA could find hyper parameter configurations that outperformed the baseline methods in six out of eight datasets.
arXiv Detail & Related papers (2020-11-22T17:12:31Z) - An Asymptotically Optimal Multi-Armed Bandit Algorithm and
Hyperparameter Optimization [48.5614138038673]
We propose an efficient and robust bandit-based algorithm called Sub-Sampling (SS) in the scenario of hyper parameter search evaluation.
We also develop a novel hyper parameter optimization algorithm called BOSS.
Empirical studies validate our theoretical arguments of SS and demonstrate the superior performance of BOSS on a number of applications.
arXiv Detail & Related papers (2020-07-11T03:15:21Z) - Efficient Model-Based Reinforcement Learning through Optimistic Policy
Search and Planning [93.1435980666675]
We show how optimistic exploration can be easily combined with state-of-the-art reinforcement learning algorithms.
Our experiments demonstrate that optimistic exploration significantly speeds-up learning when there are penalties on actions.
arXiv Detail & Related papers (2020-06-15T18:37:38Z) - GeneCAI: Genetic Evolution for Acquiring Compact AI [36.04715576228068]
Deep Neural Networks (DNNs) are evolving towards more complex architectures to achieve higher inference accuracy.
Model compression techniques can be leveraged to efficiently deploy such compute-intensive architectures on resource-limited mobile devices.
This paper introduces GeneCAI, a novel optimization method that automatically learns how to tune per-layer compression hyper- parameters.
arXiv Detail & Related papers (2020-04-08T20:56:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.