Enhancing Machine Learning Model Performance with Hyper Parameter
Optimization: A Comparative Study
- URL: http://arxiv.org/abs/2302.11406v1
- Date: Tue, 14 Feb 2023 10:12:10 GMT
- Title: Enhancing Machine Learning Model Performance with Hyper Parameter
Optimization: A Comparative Study
- Authors: Caner Erden, Halil Ibrahim Demir, Abdullah Hulusi K\"ok\c{c}am
- Abstract summary: One of the most critical issues in machine learning is the selection of appropriate hyper parameters for training models.
Hyper parameter optimization (HPO) is a popular topic that artificial intelligence studies have focused on recently.
In this study, classical methods, such as grid, random search and Bayesian optimization, and population-based algorithms, such as genetic algorithms and particle swarm optimization, are discussed.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the most critical issues in machine learning is the selection of
appropriate hyper parameters for training models. Machine learning models may
be able to reach the best training performance and may increase the ability to
generalize using hyper parameter optimization (HPO) techniques. HPO is a
popular topic that artificial intelligence studies have focused on recently and
has attracted increasing interest. While the traditional methods developed for
HPO include exhaustive search, grid search, random search, and Bayesian
optimization; meta-heuristic algorithms are also employed as more advanced
methods. Meta-heuristic algorithms search for the solution space where the
solutions converge to the best combination to solve a specific problem. These
algorithms test various scenarios and evaluate the results to select the
best-performing combinations. In this study, classical methods, such as grid,
random search and Bayesian optimization, and population-based algorithms, such
as genetic algorithms and particle swarm optimization, are discussed in terms
of the HPO. The use of related search algorithms is explained together with
Python programming codes developed on packages such as Scikit-learn, Sklearn
Genetic, and Optuna. The performance of the search algorithms is compared on a
sample data set, and according to the results, the particle swarm optimization
algorithm has outperformed the other algorithms.
Related papers
- The Firefighter Algorithm: A Hybrid Metaheuristic for Optimization Problems [3.2432648012273346]
The Firefighter Optimization (FFO) algorithm is a new hybrid metaheuristic for optimization problems.
To evaluate the performance of FFO, extensive experiments were conducted, wherein the FFO was examined against 13 commonly used optimization algorithms.
The results demonstrate that FFO achieves comparative performance and, in some scenarios, outperforms commonly adopted optimization algorithms in terms of the obtained fitness, time taken for exaction, and research space covered per unit of time.
arXiv Detail & Related papers (2024-06-01T18:38:59Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Massively Parallel Genetic Optimization through Asynchronous Propagation
of Populations [50.591267188664666]
Propulate is an evolutionary optimization algorithm and software package for global optimization.
We provide an MPI-based implementation of our algorithm, which features variants of selection, mutation, crossover, and migration.
We find that Propulate is up to three orders of magnitude faster without sacrificing solution accuracy.
arXiv Detail & Related papers (2023-01-20T18:17:34Z) - Introductory Studies of Swarm Intelligence Techniques [1.2930503923129208]
Swarm intelligence involves the collective study of individuals and their mutual interactions leading to intelligent behavior of the swarm.
The chapter presents various population-based SI algorithms, their fundamental structures along with their mathematical models.
arXiv Detail & Related papers (2022-09-26T16:29:55Z) - OptABC: an Optimal Hyperparameter Tuning Approach for Machine Learning
Algorithms [1.6114012813668934]
OptABC is proposed to help ABC algorithm in faster convergence toward a near-optimum solution.
OptABC integrates artificial bee colony algorithm, K-Means clustering, greedy algorithm, and opposition-based learning strategy.
Experimental results demonstrate the effectiveness of OptABC compared to existing approaches in the literature.
arXiv Detail & Related papers (2021-12-15T22:33:39Z) - A survey on multi-objective hyperparameter optimization algorithms for
Machine Learning [62.997667081978825]
This article presents a systematic survey of the literature published between 2014 and 2020 on multi-objective HPO algorithms.
We distinguish between metaheuristic-based algorithms, metamodel-based algorithms, and approaches using a mixture of both.
We also discuss the quality metrics used to compare multi-objective HPO procedures and present future research directions.
arXiv Detail & Related papers (2021-11-23T10:22:30Z) - Genealogical Population-Based Training for Hyperparameter Optimization [1.0514231683620516]
We experimentally demonstrate that our method cuts down by 2 to 3 times the computational cost required.
Our method is search-algorithm so that the inner search routine can be any search algorithm like TPE, GP, CMA or random search.
arXiv Detail & Related papers (2021-09-30T08:49:41Z) - Leveraging Benchmarking Data for Informed One-Shot Dynamic Algorithm
Selection [0.9281671380673306]
A key challenge in the application of evolutionary algorithms is the selection of an algorithm instance that best suits the problem at hand.
We analyze in this work how such prior performance data can be used to infer informed dynamic algorithm selection schemes for the solution of pseudo-Boolean optimization problems.
arXiv Detail & Related papers (2021-02-12T12:27:02Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
We propose the setting of extreme algorithm selection (XAS) where we consider fixed sets of thousands of candidate algorithms.
We assess the applicability of state-of-the-art AS techniques to the XAS setting and propose approaches leveraging a dyadic feature representation.
arXiv Detail & Related papers (2020-01-29T09:40:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.