論文の概要: Can LLMs assist with Ambiguity? A Quantitative Evaluation of various Large Language Models on Word Sense Disambiguation
- arxiv url: http://arxiv.org/abs/2411.18337v1
- Date: Wed, 27 Nov 2024 13:35:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:27:13.949667
- Title: Can LLMs assist with Ambiguity? A Quantitative Evaluation of various Large Language Models on Word Sense Disambiguation
- Title(参考訳): LLMは曖昧さを補うことができるか? 単語センスの曖昧さに基づく様々な大言語モデルの定量的評価
- Authors: T. G. D. K. Sumanathilaka, Nicholas Micallef, Julian Hough,
- Abstract要約: 本研究では,Large Language Models (LLMs) を用いた単語センス曖昧化(WSD)の改善について検討する。
提案手法では,プロンプトをPOSタグ,曖昧な単語のシノニム,アスペクトベース・センス・フィルタリング,少数ショットプロンプトで支援する。
数ショットのChain of Thought (COT)プロンプトベースのアプローチを利用することで、本研究はパフォーマンスを大幅に改善したことを示す。
- 参考スコア(独自算出の注目度): 5.816964541847194
- License:
- Abstract: Ambiguous words are often found in modern digital communications. Lexical ambiguity challenges traditional Word Sense Disambiguation (WSD) methods, due to limited data. Consequently, the efficiency of translation, information retrieval, and question-answering systems is hindered by these limitations. This study investigates the use of Large Language Models (LLMs) to improve WSD using a novel approach combining a systematic prompt augmentation mechanism with a knowledge base (KB) consisting of different sense interpretations. The proposed method incorporates a human-in-loop approach for prompt augmentation where prompt is supported by Part-of-Speech (POS) tagging, synonyms of ambiguous words, aspect-based sense filtering and few-shot prompting to guide the LLM. By utilizing a few-shot Chain of Thought (COT) prompting-based approach, this work demonstrates a substantial improvement in performance. The evaluation was conducted using FEWS test data and sense tags. This research advances accurate word interpretation in social media and digital communication.
- Abstract(参考訳): 曖昧な言葉は現代のデジタル通信でよく見られる。
語彙的曖昧さは、限られたデータのために従来の単語センス曖昧さ(WSD)法に挑戦する。
その結果、これらの制限により、翻訳、情報検索、質問応答システムの効率が阻害される。
本研究では,系統的なプロンプト拡張機構と異なる感覚解釈からなる知識ベース(KB)を組み合わせた新しいアプローチを用いて,Large Language Models (LLMs) を用いてWSDを改善することを検討した。
提案手法は,POPタグ付け,曖昧な単語のシノニム,アスペクトベース・センス・フィルタリング,LLMを誘導する数発のプロンプトなどによってプロンプトがサポートされる。
数ショットのChain of Thought (COT)プロンプトベースのアプローチを利用することで、本研究はパフォーマンスを大幅に改善したことを示す。
FEWSテストデータとセンスタグを用いて評価を行った。
本研究は,ソーシャルメディアとデジタルコミュニケーションにおける正確な単語解釈を推し進めるものである。
関連論文リスト
- Text-Video Retrieval with Global-Local Semantic Consistent Learning [122.15339128463715]
我々は,シンプルで効果的なグローバル局所意味的一貫性学習(GLSCL)を提案する。
GLSCLは、テキストビデオ検索のためのモダリティをまたいだ潜在共有セマンティクスを活用する。
本手法はSOTAと同等の性能を実現し,計算コストの約220倍の高速化を実現している。
論文 参考訳(メタデータ) (2024-05-21T11:59:36Z) - A Survey on Lexical Ambiguity Detection and Word Sense Disambiguation [0.0]
本稿では自然言語処理(NLP)分野における言語におけるあいまいさの理解と解決に焦点を当てた手法について検討する。
ディープラーニング技術から、WordNetのような語彙的リソースや知識グラフの活用まで、さまざまなアプローチを概説している。
本研究は, 感覚アノテートコーパスの不足, 非公式な臨床テキストの複雑さなど, この分野における永続的な課題を明らかにした。
論文 参考訳(メタデータ) (2024-03-24T12:58:48Z) - Large Language Models and Multimodal Retrieval for Visual Word Sense
Disambiguation [1.8591405259852054]
Visual Word Sense Disambiguation (VWSD)は、候補者の中から画像を取得することを目的とした、新しい課題である。
本稿では、様々なアプローチを適用することで、この興味深い課題を明らかにするための大きな一歩を踏み出す。
論文 参考訳(メタデータ) (2023-10-21T14:35:42Z) - Improved Contextual Recognition In Automatic Speech Recognition Systems
By Semantic Lattice Rescoring [4.819085609772069]
本稿では,意味的格子処理によるASRシステム内における文脈認識の高度化のための新しい手法を提案する。
提案手法は,隠れマルコフモデルとガウス混合モデル(HMM-GMM)とディープニューラルネットワーク(DNN)モデルを用いて,精度を向上する。
本稿では,実験分析によるLibriSpeechデータセット上でのフレームワークの有効性を示す。
論文 参考訳(メタデータ) (2023-10-14T23:16:05Z) - Towards Effective Disambiguation for Machine Translation with Large
Language Models [65.80775710657672]
我々は「あいまいな文」を翻訳する大規模言語モデルの能力について研究する。
実験の結果,提案手法はDeepLやNLLBといった最先端システムと5つの言語方向のうち4つで一致し,性能を向上できることがわかった。
論文 参考訳(メタデータ) (2023-09-20T22:22:52Z) - Word Sense Induction with Knowledge Distillation from BERT [6.88247391730482]
本稿では、文脈における単語の感覚に注意を払って、事前学習された言語モデル(BERT)から複数の単語感覚を抽出する手法を提案する。
文脈的単語類似性および感覚誘導タスクの実験は、この手法が最先端のマルチセンス埋め込みよりも優れているか、あるいは競合していることを示している。
論文 参考訳(メタデータ) (2023-04-20T21:05:35Z) - Multilingual Word Sense Disambiguation with Unified Sense Representation [55.3061179361177]
本稿では,知識と教師付き多言語単語センス曖昧化(MWSD)システムを提案する。
我々は複数の言語に統一されたセンス表現を構築し、リッチソース言語から貧しい言語へアノテーションを転送することでMWSDのアノテーション不足問題に対処する。
SemEval-13およびSemEval-15データセットの評価により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2022-10-14T01:24:03Z) - Contextualized Semantic Distance between Highly Overlapped Texts [85.1541170468617]
テキスト編集や意味的類似性評価といった自然言語処理タスクにおいて、ペア化されたテキストに重複が頻繁に発生する。
本稿では,マスク・アンド・予測戦略を用いてこの問題に対処することを目的とする。
本稿では,最も長い単語列の単語を隣接する単語とみなし,その位置の分布を予測するためにマスク付き言語モデリング(MLM)を用いる。
セマンティックテキスト類似性の実験では、NDDは様々な意味的差異、特に高い重なり合うペアテキストに対してより敏感であることが示されている。
論文 参考訳(メタデータ) (2021-10-04T03:59:15Z) - Meta-Learning with Variational Semantic Memory for Word Sense
Disambiguation [56.830395467247016]
メタ学習環境におけるWSDのセマンティックメモリモデルを提案する。
我々のモデルは階層的変動推論に基づいており、ハイパーネットワークを介して適応的なメモリ更新ルールを組み込んでいる。
極めて少ないシナリオでの効果的な学習を支援するために,本モデルがWSDで最先端の技術を数ショットで実現していることを示す。
論文 参考訳(メタデータ) (2021-06-05T20:40:01Z) - Fake it Till You Make it: Self-Supervised Semantic Shifts for
Monolingual Word Embedding Tasks [58.87961226278285]
語彙意味変化をモデル化するための自己教師付きアプローチを提案する。
本手法は,任意のアライメント法を用いて意味変化の検出に利用できることを示す。
3つの異なるデータセットに対する実験結果を用いて,本手法の有用性について述べる。
論文 参考訳(メタデータ) (2021-01-30T18:59:43Z) - Cross-lingual Word Sense Disambiguation using mBERT Embeddings with
Syntactic Dependencies [0.0]
言語間の単語感覚の曖昧さ (WSD) は、与えられた文脈にまたがるあいまいな単語の曖昧さに対処する。
BERT埋め込みモデルは、単語の文脈情報に有効であることが証明されている。
このプロジェクトは、構文情報がどのようにBERT埋め込みに追加され、セマンティクスと構文を組み込んだ単語埋め込みの両方をもたらすかを調査します。
論文 参考訳(メタデータ) (2020-12-09T20:22:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。