Can LLMs assist with Ambiguity? A Quantitative Evaluation of various Large Language Models on Word Sense Disambiguation
- URL: http://arxiv.org/abs/2411.18337v1
- Date: Wed, 27 Nov 2024 13:35:32 GMT
- Title: Can LLMs assist with Ambiguity? A Quantitative Evaluation of various Large Language Models on Word Sense Disambiguation
- Authors: T. G. D. K. Sumanathilaka, Nicholas Micallef, Julian Hough,
- Abstract summary: This study investigates the use of Large Language Models (LLMs) to improve Word Sense Disambiguation (WSD)
The proposed method incorporates a human-in-loop approach for prompt augmentation where prompt is supported by Part-of-Speech (POS) tagging, synonyms of ambiguous words, aspect-based sense filtering and few-shot prompting.
By utilizing a few-shot Chain of Thought (COT) prompting-based approach, this work demonstrates a substantial improvement in performance.
- Score: 5.816964541847194
- License:
- Abstract: Ambiguous words are often found in modern digital communications. Lexical ambiguity challenges traditional Word Sense Disambiguation (WSD) methods, due to limited data. Consequently, the efficiency of translation, information retrieval, and question-answering systems is hindered by these limitations. This study investigates the use of Large Language Models (LLMs) to improve WSD using a novel approach combining a systematic prompt augmentation mechanism with a knowledge base (KB) consisting of different sense interpretations. The proposed method incorporates a human-in-loop approach for prompt augmentation where prompt is supported by Part-of-Speech (POS) tagging, synonyms of ambiguous words, aspect-based sense filtering and few-shot prompting to guide the LLM. By utilizing a few-shot Chain of Thought (COT) prompting-based approach, this work demonstrates a substantial improvement in performance. The evaluation was conducted using FEWS test data and sense tags. This research advances accurate word interpretation in social media and digital communication.
Related papers
- Text-Video Retrieval with Global-Local Semantic Consistent Learning [122.15339128463715]
We propose a simple yet effective method, Global-Local Semantic Consistent Learning (GLSCL)
GLSCL capitalizes on latent shared semantics across modalities for text-video retrieval.
Our method achieves comparable performance with SOTA as well as being nearly 220 times faster in terms of computational cost.
arXiv Detail & Related papers (2024-05-21T11:59:36Z) - A Survey on Lexical Ambiguity Detection and Word Sense Disambiguation [0.0]
This paper explores techniques that focus on understanding and resolving ambiguity in language within the field of natural language processing (NLP)
It outlines diverse approaches ranging from deep learning techniques to leveraging lexical resources and knowledge graphs like WordNet.
The research identifies persistent challenges in the field, such as the scarcity of sense annotated corpora and the complexity of informal clinical texts.
arXiv Detail & Related papers (2024-03-24T12:58:48Z) - Large Language Models and Multimodal Retrieval for Visual Word Sense
Disambiguation [1.8591405259852054]
Visual Word Sense Disambiguation (VWSD) is a novel challenging task with the goal of retrieving an image among a set of candidates.
In this paper, we make a substantial step towards unveiling this interesting task by applying a varying set of approaches.
arXiv Detail & Related papers (2023-10-21T14:35:42Z) - Improved Contextual Recognition In Automatic Speech Recognition Systems
By Semantic Lattice Rescoring [4.819085609772069]
We propose a novel approach for enhancing contextual recognition within ASR systems via semantic lattice processing.
Our solution consists of using Hidden Markov Models and Gaussian Mixture Models (HMM-GMM) along with Deep Neural Networks (DNN) models for better accuracy.
We demonstrate the effectiveness of our proposed framework on the LibriSpeech dataset with empirical analyses.
arXiv Detail & Related papers (2023-10-14T23:16:05Z) - Towards Effective Disambiguation for Machine Translation with Large
Language Models [65.80775710657672]
We study the capabilities of large language models to translate "ambiguous sentences"
Experiments show that our methods can match or outperform state-of-the-art systems such as DeepL and NLLB in four out of five language directions.
arXiv Detail & Related papers (2023-09-20T22:22:52Z) - Word Sense Induction with Knowledge Distillation from BERT [6.88247391730482]
This paper proposes a method to distill multiple word senses from a pre-trained language model (BERT) by using attention over the senses of a word in a context.
Experiments on the contextual word similarity and sense induction tasks show that this method is superior to or competitive with state-of-the-art multi-sense embeddings.
arXiv Detail & Related papers (2023-04-20T21:05:35Z) - Multilingual Word Sense Disambiguation with Unified Sense Representation [55.3061179361177]
We propose building knowledge and supervised-based Multilingual Word Sense Disambiguation (MWSD) systems.
We build unified sense representations for multiple languages and address the annotation scarcity problem for MWSD by transferring annotations from rich-sourced languages to poorer ones.
Evaluations of SemEval-13 and SemEval-15 datasets demonstrate the effectiveness of our methodology.
arXiv Detail & Related papers (2022-10-14T01:24:03Z) - Contextualized Semantic Distance between Highly Overlapped Texts [85.1541170468617]
Overlapping frequently occurs in paired texts in natural language processing tasks like text editing and semantic similarity evaluation.
This paper aims to address the issue with a mask-and-predict strategy.
We take the words in the longest common sequence as neighboring words and use masked language modeling (MLM) to predict the distributions on their positions.
Experiments on Semantic Textual Similarity show NDD to be more sensitive to various semantic differences, especially on highly overlapped paired texts.
arXiv Detail & Related papers (2021-10-04T03:59:15Z) - Meta-Learning with Variational Semantic Memory for Word Sense
Disambiguation [56.830395467247016]
We propose a model of semantic memory for WSD in a meta-learning setting.
Our model is based on hierarchical variational inference and incorporates an adaptive memory update rule via a hypernetwork.
We show our model advances the state of the art in few-shot WSD, supports effective learning in extremely data scarce scenarios.
arXiv Detail & Related papers (2021-06-05T20:40:01Z) - Fake it Till You Make it: Self-Supervised Semantic Shifts for
Monolingual Word Embedding Tasks [58.87961226278285]
We propose a self-supervised approach to model lexical semantic change.
We show that our method can be used for the detection of semantic change with any alignment method.
We illustrate the utility of our techniques using experimental results on three different datasets.
arXiv Detail & Related papers (2021-01-30T18:59:43Z) - Cross-lingual Word Sense Disambiguation using mBERT Embeddings with
Syntactic Dependencies [0.0]
Cross-lingual word sense disambiguation (WSD) tackles the challenge of disambiguating ambiguous words across languages given context.
BERT embedding model has been proven to be effective in contextual information of words.
This project investigates how syntactic information can be added into the BERT embeddings to result in both semantics- and syntax-incorporated word embeddings.
arXiv Detail & Related papers (2020-12-09T20:22:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.