論文の概要: OpenING: A Comprehensive Benchmark for Judging Open-ended Interleaved Image-Text Generation
- arxiv url: http://arxiv.org/abs/2411.18499v3
- Date: Sun, 30 Mar 2025 07:22:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 15:20:31.009576
- Title: OpenING: A Comprehensive Benchmark for Judging Open-ended Interleaved Image-Text Generation
- Title(参考訳): Opening: オープンエンドのインターリーブ画像テキスト生成を判断するための総合ベンチマーク
- Authors: Pengfei Zhou, Xiaopeng Peng, Jiajun Song, Chuanhao Li, Zhaopan Xu, Yue Yang, Ziyao Guo, Hao Zhang, Yuqi Lin, Yefei He, Lirui Zhao, Shuo Liu, Tianhua Li, Yuxuan Xie, Xiaojun Chang, Yu Qiao, Wenqi Shao, Kaipeng Zhang,
- Abstract要約: MLLM(Multimodal Large Language Models)は視覚的理解と生成に大きく貢献している。
インターリーブされた画像テキストコンテンツを生成することは、依然として課題である。
Openingは56の現実世界のタスクにわたる5,400の高品質なヒューマンアノテートインスタンスからなるベンチマークである。
IntJudgeはオープンなマルチモーダル生成手法を評価するための判断モデルである。
- 参考スコア(独自算出の注目度): 59.53678957969471
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal Large Language Models (MLLMs) have made significant strides in visual understanding and generation tasks. However, generating interleaved image-text content remains a challenge, which requires integrated multimodal understanding and generation abilities. While the progress in unified models offers new solutions, existing benchmarks are insufficient for evaluating these methods due to limitations in data size and diversity. To bridge this gap, we introduce OpenING, a comprehensive benchmark comprising 5,400 high-quality human-annotated instances across 56 real-world tasks. OpenING covers diverse daily scenarios such as travel guide, design, and brainstorming, offering a robust platform for challenging interleaved generation methods. In addition, we present IntJudge, a judge model for evaluating open-ended multimodal generation methods. Trained with a novel data pipeline, our IntJudge achieves an agreement rate of 82.42% with human judgments, outperforming GPT-based evaluators by 11.34%. Extensive experiments on OpenING reveal that current interleaved generation methods still have substantial room for improvement. Key findings on interleaved image-text generation are further presented to guide the development of next-generation models.
- Abstract(参考訳): MLLM(Multimodal Large Language Models)は視覚的理解と生成に大きく貢献している。
しかし、インターリーブされた画像テキストコンテンツを生成することは依然として課題であり、統合されたマルチモーダル理解と生成能力が必要である。
統一モデルの進歩は新しい解決策を提供するが、既存のベンチマークはデータサイズと多様性の制限のためにこれらの手法を評価するには不十分である。
このギャップを埋めるために、56の現実世界のタスクにまたがる5,400の高品質なヒューマンアノテートインスタンスからなる包括的なベンチマークであるOpeningを紹介します。
オープン化は、旅行ガイド、デザイン、ブレインストーミングといった様々な日常シナリオをカバーし、インターリーブドジェネレーション手法に挑戦するための堅牢なプラットフォームを提供する。
さらに,オープンなマルチモーダル生成手法を評価するための判断モデルであるIntJudgeを提案する。
我々のIntJudgeは、新しいデータパイプラインでトレーニングされ、人間の判断による合意率は82.42%に達し、GPTベースの評価器を11.34%上回る。
オープン化に関する大規模な実験により、現在のインターリーブ生成手法には改善の余地がまだ残っていることが判明した。
さらに、次世代モデルの開発を導くために、インターリーブ画像テキスト生成に関する重要な知見が提示される。
関連論文リスト
- MMIE: Massive Multimodal Interleaved Comprehension Benchmark for Large Vision-Language Models [71.36392373876505]
我々は、LVLM(Large Vision-Language Models)において、インターリーブされたマルチモーダル理解と生成を評価するための大規模ベンチマークであるMMIEを紹介する。
MMIEは、数学、コーディング、物理学、文学、健康、芸術を含む3つのカテゴリ、12のフィールド、102のサブフィールドにまたがる20Kの厳密にキュレートされたマルチモーダルクエリで構成されている。
インターリーブされたインプットとアウトプットの両方をサポートし、多様な能力を評価するために、複数選択とオープンな質問フォーマットの混合を提供する。
論文 参考訳(メタデータ) (2024-10-14T04:15:00Z) - Harmonizing Visual Text Comprehension and Generation [31.605599298507293]
視覚テキストの理解と生成に長けた,統一的で汎用的なマルチモーダル生成モデルであるTextHarmonyを提案する。
我々は,多モード生成空間を部分的に分離して,モダリティ特化およびモダリティ非依存のLoRAエキスパートを集約するSlide-LoRAを提案する。
様々なベンチマークによる総合的な実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-07-23T10:11:56Z) - Retrieval is Accurate Generation [99.24267226311157]
本稿では,支援文書の集合からコンテキスト認識句を選択する新しい手法を提案する。
本モデルでは,検索対象のベースラインの中で,最高の性能と低レイテンシを実現する。
論文 参考訳(メタデータ) (2024-02-27T14:16:19Z) - Exploring Precision and Recall to assess the quality and diversity of LLMs [82.21278402856079]
我々はtextscLlama-2 や textscMistral のような大規模言語モデル (LLM) のための新しい評価フレームワークを提案する。
このアプローチにより、コーパスの整合を必要とせず、生成したテキストの品質と多様性を微妙に評価できる。
論文 参考訳(メタデータ) (2024-02-16T13:53:26Z) - MT-Eval: A Multi-Turn Capabilities Evaluation Benchmark for Large
Language Models [70.92847554971065]
MT-Evalは,マルチターン対話能力を評価するための総合的なベンチマークである。
人間のLLM会話を解析することにより,インタラクションパターンを,再現,拡張,洗練,フォローアップの4つのタイプに分類する。
11個の有名なLCMを評価したところ、クローズドソースモデルは一般的にオープンソースモデルを上回るが、特定のタスクにおいて特定のオープンソースモデルの方がGPT-3.5-Turboを上回っていることがわかった。
論文 参考訳(メタデータ) (2024-01-30T04:50:28Z) - MiniGPT-5: Interleaved Vision-and-Language Generation via Generative Vokens [22.802963850131306]
生成ボケンの概念を主軸とした,新たなインターリーブ型視覚・言語生成手法を提案する。
本手法は,記述自由なマルチモーダル生成のためのユニークな2段階学習戦略によって特徴付けられる。
我々のモデルであるMiniGPT-5は、マルチモーダル生成データセットのベースラインモデルよりも大幅に改善されている。
論文 参考訳(メタデータ) (2023-10-03T17:49:04Z) - L-Eval: Instituting Standardized Evaluation for Long Context Language
Models [91.05820785008527]
長い文脈言語モデル(LCLM)のより標準化された評価を行うためにL-Evalを提案する。
20のサブタスク、508の長いドキュメント、2000以上の人間ラベルのクエリ応答対を含む新しい評価スイートを構築した。
その結果、一般的なn-gramマッチングの指標は人間の判断とよく相関しないことがわかった。
論文 参考訳(メタデータ) (2023-07-20T17:59:41Z) - JourneyDB: A Benchmark for Generative Image Understanding [89.02046606392382]
生成画像の領域に適合する包括的データセットであるJourneyDBを導入する。
精巧にキュレートされたデータセットは、400万の異なる高品質な画像で構成されています。
本データセットでは,生成した画像の理解性能を評価するための4つのベンチマークを考案した。
論文 参考訳(メタデータ) (2023-07-03T02:39:08Z) - MuRAG: Multimodal Retrieval-Augmented Generator for Open Question
Answering over Images and Text [58.655375327681774]
我々は,Multimodal Retrieval-Augmented Transformer (MuRAG)を提案する。
MuRAGは外部の非パラメトリックマルチモーダルメモリにアクセスして言語生成を増強する。
以上の結果から, MuRAGは最先端の精度を達成し, 既存のモデルよりも10~20%精度が高いことがわかった。
論文 参考訳(メタデータ) (2022-10-06T13:58:03Z) - Mutual Information Divergence: A Unified Metric for Multimodal
Generative Models [19.520177195241704]
我々は,MID(Multual Information Divergence)を用いて作成したCLIP特徴を統一計量として用いた負のガウス交叉情報を提案する。
我々は、テキスト・ツー・イメージ生成や画像キャプションタスクにおいて、慎重に生成された、あるいは人手による判断を用いて、競合する指標と比較した。
提案したMIDは、ベンチマーク、サンプルパーシモニー、および悪用されたCLIPモデルに対するロバスト性によって、競合する手法よりも大幅に優れている。
論文 参考訳(メタデータ) (2022-05-25T09:34:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。