論文の概要: Enhancing weed detection performance by means of GenAI-based image augmentation
- arxiv url: http://arxiv.org/abs/2411.18513v2
- Date: Thu, 28 Nov 2024 09:33:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 11:38:13.676265
- Title: Enhancing weed detection performance by means of GenAI-based image augmentation
- Title(参考訳): GenAIによる画像強調による雑草検出性能の向上
- Authors: Sourav Modak, Anthony Stein,
- Abstract要約: 本稿では、安定拡散モデルを用いて、雑草検出モデルのための多様な合成画像を生成する、生成AIベースの拡張手法について検討する。
その結果、生成AI拡張データセットでトレーニングしたYOLOモデルの平均精度が大幅に向上した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Precise weed management is essential for sustaining crop productivity and ecological balance. Traditional herbicide applications face economic and environmental challenges, emphasizing the need for intelligent weed control systems powered by deep learning. These systems require vast amounts of high-quality training data. The reality of scarcity of well-annotated training data, however, is often addressed through generating more data using data augmentation. Nevertheless, conventional augmentation techniques such as random flipping, color changes, and blurring lack sufficient fidelity and diversity. This paper investigates a generative AI-based augmentation technique that uses the Stable Diffusion model to produce diverse synthetic images that improve the quantity and quality of training datasets for weed detection models. Moreover, this paper explores the impact of these synthetic images on the performance of real-time detection systems, thus focusing on compact CNN-based models such as YOLO nano for edge devices. The experimental results show substantial improvements in mean Average Precision (mAP50 and mAP50-95) scores for YOLO models trained with generative AI-augmented datasets, demonstrating the promising potential of synthetic data to enhance model robustness and accuracy.
- Abstract(参考訳): 精密雑草管理は、作物の生産性と生態的バランスを維持するために不可欠である。
伝統的な除草剤の応用は、ディープラーニングを利用した知的雑草制御システムの必要性を強調し、経済的および環境的な課題に直面している。
これらのシステムは、大量の高品質なトレーニングデータを必要とする。
しかし、十分に注釈付けされたトレーニングデータの不足の現実は、データ拡張を使ってより多くのデータを生成することで対処されることが多い。
それでも、ランダムなフリップ、色の変化、ぼやけなどの従来の拡張技術は、十分な忠実さと多様性を欠いている。
本稿では、安定拡散モデルを用いて、雑草検出モデルのトレーニングデータセットの量と品質を改善する多様な合成画像を生成する、生成AIベースの拡張手法について検討する。
さらに,これらの合成画像がリアルタイム検出システムの性能に与える影響を考察し,エッジデバイス用YOLOナノなどのコンパクトCNNモデルに着目した。
実験の結果,生成AI拡張データセットを用いてトレーニングしたYOLOモデルの平均精度(mAP50,mAP50-95)が大幅に向上し,モデル堅牢性と精度を高めるために合成データの有望な可能性を実証した。
関連論文リスト
- Generative AI-based Pipeline Architecture for Increasing Training Efficiency in Intelligent Weed Control Systems [0.0]
本研究は,知的雑草制御のための深層学習に基づく物体検出モデルを改善するために,合成画像を生成する新しいアプローチを提案する。
我々のGenAIベースの画像生成パイプラインは、ゼロショットドメイン適応のためのSegment Anything Model(SAM)と、テキストから画像への安定拡散モデルを統合する。
我々は、これらの合成データセットを軽量YOLOモデルを用いて評価し、mAP50とmAP50-95スコアを用いてデータ効率を測定した。
論文 参考訳(メタデータ) (2024-11-01T12:58:27Z) - A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
コンピュータビジョンでは、データの多様性の欠如がモデル性能を損なうことはよく知られている。
本稿では, 生成モデルの進歩を生かして, 単純かつ効果的なデータ拡張手法を提案する。
背景強化は、特にモデルの堅牢性と一般化能力を大幅に改善する。
論文 参考訳(メタデータ) (2024-08-01T07:40:00Z) - Synthetic Image Learning: Preserving Performance and Preventing Membership Inference Attacks [5.0243930429558885]
本稿では,下流分類器の学習のための合成データの生成と利用を最適化するパイプラインである知識リサイクル(KR)を紹介する。
このパイプラインの核心は生成的知識蒸留(GKD)であり、情報の品質と有用性を大幅に向上させる技術が提案されている。
その結果、実データと合成データでトレーニングされたモデルと、実データでトレーニングされたモデルとの性能差が著しく低下した。
論文 参考訳(メタデータ) (2024-07-22T10:31:07Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
現在の知覚モデルは、リソース集約的なデータセットに大きく依存している。
セグメンテーションを通じて知覚認識損失(P.A.損失)を導入し、品質と制御性の両方を改善した。
本手法は,世代間における知覚認識属性(P.A. Attr)の抽出と利用により,データ拡張をカスタマイズする。
論文 参考訳(メタデータ) (2024-03-20T04:58:03Z) - Enhanced Droplet Analysis Using Generative Adversarial Networks [0.0]
この研究は、DropletGANという画像生成装置を開発し、ドロップレットの画像を生成する。
また、合成データセットを用いた光液滴検出器の開発にも用いられている。
我々の知る限りでは、この研究は初めて、液滴の検出を増強するための生成モデルを用いたものである。
論文 参考訳(メタデータ) (2024-02-24T21:20:53Z) - UAV-Sim: NeRF-based Synthetic Data Generation for UAV-based Perception [62.71374902455154]
ニューラルレンダリングの最近の進歩を利用して、静的および動的ノベルビューUAVベースの画像レンダリングを改善する。
本研究では,主に実データと合成データのハイブリッドセットに基づいて最先端検出モデルが最適化された場合,性能が大幅に向上することを示す。
論文 参考訳(メタデータ) (2023-10-25T00:20:37Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
リソグラフィーモデリングは、チップ設計マスクが製造可能であることを保証するため、チップ設計において重要な問題である。
機械学習の最近の進歩は、時間を要するリソグラフィーシミュレーションをディープニューラルネットワークに置き換えるための代替ソリューションを提供している。
本稿では,限られたデータのジレンマを解消し,機械学習モデルの性能を向上させるために,データ拡張フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-27T20:53:39Z) - Improving Adversarial Robustness by Contrastive Guided Diffusion Process [19.972628281993487]
データ生成における拡散モデルを導くために,コントラスト誘導拡散プロセス(Contrastive-Guided Diffusion Process, DP)を提案する。
生成データ間の識別性の向上は, 対向的ロバスト性の向上に不可欠であることを示す。
論文 参考訳(メタデータ) (2022-10-18T07:20:53Z) - Deep Data Augmentation for Weed Recognition Enhancement: A Diffusion
Probabilistic Model and Transfer Learning Based Approach [17.860192771292713]
本稿では,拡散確率モデルを用いて高品質な合成雑草画像を生成する方法を提案する。
開発されたアプローチは、いくつかの最先端のGANモデルより一貫して優れている。
合成雑草画像による拡張データセットは、雑草分類タスクのための4つのディープラーニング(DL)モデルにおけるモデルパフォーマンスを向上させる可能性がある。
論文 参考訳(メタデータ) (2022-10-18T01:00:25Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
GradABM(GradABM)は、エージェントベースのモデリングのためのスケーラブルで微分可能な設計で、勾配に基づく学習と自動微分が可能である。
GradABMは、コモディティハードウェア上で数秒で数百万の人口をシミュレートし、ディープニューラルネットワークと統合し、異種データソースを取り込みます。
論文 参考訳(メタデータ) (2022-07-20T07:32:02Z) - Negative Data Augmentation [127.28042046152954]
負のデータ拡張サンプルは、データ分散のサポートに関する情報を提供することを示す。
我々は、NDAを識別器の合成データの追加源として利用する新しいGAN訓練目標を提案する。
実験により,本手法で訓練したモデルでは,異常検出能力の向上とともに条件付き・条件付き画像生成の改善を実現している。
論文 参考訳(メタデータ) (2021-02-09T20:28:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。