論文の概要: Generative AI-based Pipeline Architecture for Increasing Training Efficiency in Intelligent Weed Control Systems
- arxiv url: http://arxiv.org/abs/2411.00548v1
- Date: Fri, 01 Nov 2024 12:58:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:51:10.131459
- Title: Generative AI-based Pipeline Architecture for Increasing Training Efficiency in Intelligent Weed Control Systems
- Title(参考訳): インテリジェント雑草制御システムにおける訓練効率向上のためのAIに基づく生成パイプラインアーキテクチャ
- Authors: Sourav Modak, Anthony Stein,
- Abstract要約: 本研究は,知的雑草制御のための深層学習に基づく物体検出モデルを改善するために,合成画像を生成する新しいアプローチを提案する。
我々のGenAIベースの画像生成パイプラインは、ゼロショットドメイン適応のためのSegment Anything Model(SAM)と、テキストから画像への安定拡散モデルを統合する。
我々は、これらの合成データセットを軽量YOLOモデルを用いて評価し、mAP50とmAP50-95スコアを用いてデータ効率を測定した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In automated crop protection tasks such as weed control, disease diagnosis, and pest monitoring, deep learning has demonstrated significant potential. However, these advanced models rely heavily on high-quality, diverse datasets, often limited and costly in agricultural settings. Traditional data augmentation can increase dataset volume but usually lacks the real-world variability needed for robust training. This study presents a new approach for generating synthetic images to improve deep learning-based object detection models for intelligent weed control. Our GenAI-based image generation pipeline integrates the Segment Anything Model (SAM) for zero-shot domain adaptation with a text-to-image Stable Diffusion Model, enabling the creation of synthetic images that capture diverse real-world conditions. We evaluate these synthetic datasets using lightweight YOLO models, measuring data efficiency with mAP50 and mAP50-95 scores across varying proportions of real and synthetic data. Notably, YOLO models trained on datasets with 10% synthetic and 90% real images generally demonstrate superior mAP50 and mAP50-95 scores compared to those trained solely on real images. This approach not only reduces dependence on extensive real-world datasets but also enhances predictive performance. The integration of this approach opens opportunities for achieving continual self-improvement of perception modules in intelligent technical systems.
- Abstract(参考訳): 雑草管理、疾患診断、害虫モニタリングなどの自動作物保護タスクにおいて、ディープラーニングは大きな可能性を秘めている。
しかし、これらの先進的なモデルは高品質で多様なデータセットに大きく依存しており、しばしば農業環境では制限されコストがかかる。
従来のデータ拡張はデータセットのボリュームを増大させるが、堅牢なトレーニングに必要な現実的な変動を欠いている。
本研究は,知的雑草制御のための深層学習に基づく物体検出モデルを改善するために,合成画像を生成する新しいアプローチを提案する。
我々のGenAIベースの画像生成パイプラインは、ゼロショットドメイン適応のためのSegment Anything Model(SAM)と、テキストから画像への安定拡散モデルを統合することで、多様な現実世界の状態をキャプチャする合成画像の作成を可能にします。
我々は,これらの合成データセットを軽量YOLOモデルを用いて評価し,実データと合成データの比率の異なるmAP50とmAP50-95スコアを用いてデータ効率を測定した。
特に、10%の合成画像と90%の実画像を持つデータセットでトレーニングされたYOLOモデルは、通常、実画像のみでトレーニングされたモデルと比較して、優れたmAP50とmAP50-95スコアを示している。
このアプローチは、大規模な実世界のデータセットへの依存を減らすだけでなく、予測性能も向上する。
このアプローチの統合は、インテリジェントな技術システムにおいて知覚モジュールの継続的な自己改善を実現する機会を開く。
関連論文リスト
- Analysis of Classifier Training on Synthetic Data for Cross-Domain Datasets [4.696575161583618]
本研究は、高度な運転支援システムと自律運転のためのカメラベースの交通標識認識アプリケーションに焦点を当てた。
合成データセットの増補パイプラインは、構造化影やガウスの特異なハイライトのような新しい増補プロセスを含む。
実験の結果、クロスドメインテストデータセットに適用した場合、ほとんどの場合、合成画像ベースアプローチは実際の画像ベーストレーニングよりも優れていた。
論文 参考訳(メタデータ) (2024-10-30T07:11:41Z) - Accelerating Domain-Aware Electron Microscopy Analysis Using Deep Learning Models with Synthetic Data and Image-Wide Confidence Scoring [0.0]
我々は物理に基づく合成画像とデータ生成装置を作成し、その結果、同等の精度(0.86)、リコール(0.63)、F1スコア(0.71)、エンジニアリング特性予測(R2=0.82)を実現する機械学習モデルを得た。
本研究は,合成データがMLの人間依存を排除し,画像毎に多くの特徴を検出する必要がある場合に,ドメイン認識の手段を提供することを示す。
論文 参考訳(メタデータ) (2024-08-02T20:15:15Z) - Towards Realistic Data Generation for Real-World Super-Resolution [58.88039242455039]
RealDGenは、現実世界の超解像のために設計された教師なし学習データ生成フレームワークである。
我々は,コンテンツ分解脱結合拡散モデルに統合されたコンテンツと劣化抽出戦略を開発する。
実験により、RealDGenは、現実世界の劣化を反映する大規模で高品質なペアデータを生成するのに優れていることが示された。
論文 参考訳(メタデータ) (2024-06-11T13:34:57Z) - Is Synthetic Image Useful for Transfer Learning? An Investigation into Data Generation, Volume, and Utilization [62.157627519792946]
ブリッジドトランスファー(ブリッジドトランスファー)と呼ばれる新しいフレームワークを導入する。このフレームワークは、当初、トレーニング済みモデルの微調整に合成画像を使用し、転送性を向上させる。
合成画像と実画像のスタイルアライメントを改善するために,データセットスタイルの逆変換方式を提案する。
提案手法は10の異なるデータセットと5つの異なるモデルで評価され、一貫した改善が示されている。
論文 参考訳(メタデータ) (2024-03-28T22:25:05Z) - Enhanced Droplet Analysis Using Generative Adversarial Networks [0.0]
この研究は、DropletGANという画像生成装置を開発し、ドロップレットの画像を生成する。
また、合成データセットを用いた光液滴検出器の開発にも用いられている。
我々の知る限りでは、この研究は初めて、液滴の検出を増強するための生成モデルを用いたものである。
論文 参考訳(メタデータ) (2024-02-24T21:20:53Z) - Improving the Effectiveness of Deep Generative Data [5.856292656853396]
下流の画像処理タスクのための純粋合成画像のモデルを訓練すると、実際のデータに対するトレーニングに比べ、望ましくない性能低下が生じる。
本稿では,この現象に寄与する要因を記述した新しい分類法を提案し,CIFAR-10データセットを用いて検討する。
本手法は,合成データと合成データの混合による学習と合成データのみの学習において,下流分類タスクのベースラインに優れる。
論文 参考訳(メタデータ) (2023-11-07T12:57:58Z) - UAV-Sim: NeRF-based Synthetic Data Generation for UAV-based Perception [62.71374902455154]
ニューラルレンダリングの最近の進歩を利用して、静的および動的ノベルビューUAVベースの画像レンダリングを改善する。
本研究では,主に実データと合成データのハイブリッドセットに基づいて最先端検出モデルが最適化された場合,性能が大幅に向上することを示す。
論文 参考訳(メタデータ) (2023-10-25T00:20:37Z) - STORM: Efficient Stochastic Transformer based World Models for
Reinforcement Learning [82.03481509373037]
近年,モデルに基づく強化学習アルゴリズムは視覚入力環境において顕著な有効性を示している。
本稿では,強力なモデリングと生成機能を組み合わせた効率的な世界モデルアーキテクチャであるTransformer-based wORld Model (STORM)を紹介する。
Stormは、Atari 100$kベンチマークで平均126.7%の人的パフォーマンスを達成し、最先端のメソッドの中で新しい記録を樹立した。
論文 参考訳(メタデータ) (2023-10-14T16:42:02Z) - On quantifying and improving realism of images generated with diffusion [50.37578424163951]
与えられた画像の5つの統計的測度から算出した画像リアリズムスコア(IRS)と呼ばれるメトリクスを提案する。
IRSは、与えられた画像を実または偽のものとして分類する手段として容易に利用できる。
我々は,安定拡散モデル (SDM) , Dalle2, Midjourney, BigGAN による偽画像の検出に成功して,提案したIRSのモデルおよびデータに依存しない性質を実験的に確立した。
このデータセットは、高品質の4つのモデルによって生成される100のクラスに対して1,000のサンプルを提供します。
論文 参考訳(メタデータ) (2023-09-26T08:32:55Z) - Augmenting medical image classifiers with synthetic data from latent
diffusion models [12.077733447347592]
我々は,潜伏拡散モデルが皮膚疾患の画像を生成することを実証した。
我々は,複数の生成戦略を用いて生成した458,920個の合成画像の新しいデータセットを生成し,解析する。
論文 参考訳(メタデータ) (2023-08-23T22:34:49Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
リソグラフィーモデリングは、チップ設計マスクが製造可能であることを保証するため、チップ設計において重要な問題である。
機械学習の最近の進歩は、時間を要するリソグラフィーシミュレーションをディープニューラルネットワークに置き換えるための代替ソリューションを提供している。
本稿では,限られたデータのジレンマを解消し,機械学習モデルの性能を向上させるために,データ拡張フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-27T20:53:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。