Enhancing weed detection performance by means of GenAI-based image augmentation
- URL: http://arxiv.org/abs/2411.18513v2
- Date: Thu, 28 Nov 2024 09:33:06 GMT
- Title: Enhancing weed detection performance by means of GenAI-based image augmentation
- Authors: Sourav Modak, Anthony Stein,
- Abstract summary: This paper investigates a generative AI-based augmentation technique that uses the Stable Diffusion model to produce diverse synthetic images for weed detection models.
Results show substantial improvements in mean Average Precision for YOLO models trained with generative AI-augmented datasets.
- Score: 0.0
- License:
- Abstract: Precise weed management is essential for sustaining crop productivity and ecological balance. Traditional herbicide applications face economic and environmental challenges, emphasizing the need for intelligent weed control systems powered by deep learning. These systems require vast amounts of high-quality training data. The reality of scarcity of well-annotated training data, however, is often addressed through generating more data using data augmentation. Nevertheless, conventional augmentation techniques such as random flipping, color changes, and blurring lack sufficient fidelity and diversity. This paper investigates a generative AI-based augmentation technique that uses the Stable Diffusion model to produce diverse synthetic images that improve the quantity and quality of training datasets for weed detection models. Moreover, this paper explores the impact of these synthetic images on the performance of real-time detection systems, thus focusing on compact CNN-based models such as YOLO nano for edge devices. The experimental results show substantial improvements in mean Average Precision (mAP50 and mAP50-95) scores for YOLO models trained with generative AI-augmented datasets, demonstrating the promising potential of synthetic data to enhance model robustness and accuracy.
Related papers
- Generative AI-based Pipeline Architecture for Increasing Training Efficiency in Intelligent Weed Control Systems [0.0]
This study presents a new approach for generating synthetic images to improve deep learning-based object detection models for intelligent weed control.
Our GenAI-based image generation pipeline integrates the Segment Anything Model (SAM) for zero-shot domain adaptation with a text-to-image Stable Diffusion Model.
We evaluate these synthetic datasets using lightweight YOLO models, measuring data efficiency with mAP50 and mAP50-95 scores.
arXiv Detail & Related papers (2024-11-01T12:58:27Z) - A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
In computer vision, it is well-known that a lack of data diversity will impair model performance.
We propose a simple yet effective data augmentation approach by leveraging advancements in generative models.
Background augmentation, in particular, significantly improves the models' robustness and generalization capabilities.
arXiv Detail & Related papers (2024-08-01T07:40:00Z) - Synthetic Image Learning: Preserving Performance and Preventing Membership Inference Attacks [5.0243930429558885]
This paper introduces Knowledge Recycling (KR), a pipeline designed to optimise the generation and use of synthetic data for training downstream classifiers.
At the heart of this pipeline is Generative Knowledge Distillation (GKD), the proposed technique that significantly improves the quality and usefulness of the information.
The results show a significant reduction in the performance gap between models trained on real and synthetic data, with models based on synthetic data outperforming those trained on real data in some cases.
arXiv Detail & Related papers (2024-07-22T10:31:07Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
Current perceptive models heavily depend on resource-intensive datasets.
We introduce perception-aware loss (P.A. loss) through segmentation, improving both quality and controllability.
Our method customizes data augmentation by extracting and utilizing perception-aware attribute (P.A. Attr) during generation.
arXiv Detail & Related papers (2024-03-20T04:58:03Z) - Enhanced Droplet Analysis Using Generative Adversarial Networks [0.0]
This work develops an image generator named DropletGAN to generate images of droplets.
It is also used to develop a light droplet detector using the synthetic dataset.
To the best of our knowledge, this work stands as the first to employ a generative model for augmenting droplet detection.
arXiv Detail & Related papers (2024-02-24T21:20:53Z) - UAV-Sim: NeRF-based Synthetic Data Generation for UAV-based Perception [62.71374902455154]
We leverage recent advancements in neural rendering to improve static and dynamic novelview UAV-based image rendering.
We demonstrate a considerable performance boost when a state-of-the-art detection model is optimized primarily on hybrid sets of real and synthetic data.
arXiv Detail & Related papers (2023-10-25T00:20:37Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
Lithography modeling is a crucial problem in chip design to ensure a chip design mask is manufacturable.
Recent developments in machine learning have provided alternative solutions in replacing the time-consuming lithography simulations with deep neural networks.
We propose a litho-aware data augmentation framework to resolve the dilemma of limited data and improve the machine learning model performance.
arXiv Detail & Related papers (2022-10-27T20:53:39Z) - Improving Adversarial Robustness by Contrastive Guided Diffusion Process [19.972628281993487]
We propose Contrastive-Guided Diffusion Process (Contrastive-DP) to guide the diffusion model in data generation.
We show that enhancing the distinguishability among the generated data is critical for improving adversarial robustness.
arXiv Detail & Related papers (2022-10-18T07:20:53Z) - Deep Data Augmentation for Weed Recognition Enhancement: A Diffusion
Probabilistic Model and Transfer Learning Based Approach [17.860192771292713]
We present the first work of applying diffusion probabilistic models to generate high-quality synthetic weed images.
The developed approach consistently outperforms several state-of-the-art GAN models.
The expanding dataset with synthetic weed images can apparently boost model performance on four deep learning (DL) models for the weed classification tasks.
arXiv Detail & Related papers (2022-10-18T01:00:25Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - Negative Data Augmentation [127.28042046152954]
We show that negative data augmentation samples provide information on the support of the data distribution.
We introduce a new GAN training objective where we use NDA as an additional source of synthetic data for the discriminator.
Empirically, models trained with our method achieve improved conditional/unconditional image generation along with improved anomaly detection capabilities.
arXiv Detail & Related papers (2021-02-09T20:28:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.