Functional relevance based on the continuous Shapley value
- URL: http://arxiv.org/abs/2411.18575v1
- Date: Wed, 27 Nov 2024 18:20:00 GMT
- Title: Functional relevance based on the continuous Shapley value
- Authors: Pedro Delicado, Cristian Pachón-García,
- Abstract summary: This work focuses on interpretability of predictive models based on functional data.
We propose an interpretability method based on the Shapley value for continuous games.
The method is illustrated through a set of experiments with simulated and real data sets.
- Score: 0.0
- License:
- Abstract: The presence of Artificial Intelligence (AI) in our society is increasing, which brings with it the need to understand the behaviour of AI mechanisms, including machine learning predictive algorithms fed with tabular data, text, or images, among other types of data. This work focuses on interpretability of predictive models based on functional data. Designing interpretability methods for functional data models implies working with a set of features whose size is infinite. In the context of scalar on function regression, we propose an interpretability method based on the Shapley value for continuous games, a mathematical formulation that allows to fairly distribute a global payoff among a continuous set players. The method is illustrated through a set of experiments with simulated and real data sets. The open source Python package ShapleyFDA is also presented.
Related papers
- Logistic-beta processes for dependent random probabilities with beta marginals [58.91121576998588]
We propose a novel process called the logistic-beta process, whose logistic transformation yields a process with common beta marginals.
It can model dependence on both discrete and continuous domains, such as space or time, and has a flexible dependence structure through correlation kernels.
We illustrate the benefits through nonparametric binary regression and conditional density estimation examples, both in simulation studies and in a pregnancy outcome application.
arXiv Detail & Related papers (2024-02-10T21:41:32Z) - Variational Shapley Network: A Probabilistic Approach to Self-Explaining
Shapley values with Uncertainty Quantification [2.6699011287124366]
Shapley values have emerged as a foundational tool in machine learning (ML) for elucidating model decision-making processes.
We introduce a novel, self-explaining method that simplifies the computation of Shapley values significantly, requiring only a single forward pass.
arXiv Detail & Related papers (2024-02-06T18:09:05Z) - FIND: A Function Description Benchmark for Evaluating Interpretability
Methods [86.80718559904854]
This paper introduces FIND (Function INterpretation and Description), a benchmark suite for evaluating automated interpretability methods.
FIND contains functions that resemble components of trained neural networks, and accompanying descriptions of the kind we seek to generate.
We evaluate methods that use pretrained language models to produce descriptions of function behavior in natural language and code.
arXiv Detail & Related papers (2023-09-07T17:47:26Z) - Stability for Inference with Persistent Homology Rank Functions [0.0]
We revisit the persistent homology rank function as a tool for statistics and machine learning.
We find that the use of persistent homology captured by rank functions offers a clear improvement over existing non-persistence-based approaches.
arXiv Detail & Related papers (2023-07-06T10:34:52Z) - Explaining Predictive Uncertainty with Information Theoretic Shapley
Values [6.49838460559032]
We adapt the popular Shapley value framework to explain various types of predictive uncertainty.
We implement efficient algorithms that perform well in a range of experiments on real and simulated data.
arXiv Detail & Related papers (2023-06-09T07:43:46Z) - An Entropy-Based Model for Hierarchical Learning [3.1473798197405944]
A common feature among real-world datasets is that data domains are multiscale.
We propose a learning model that exploits this multiscale data structure.
The hierarchical learning model is inspired by the logical and progressive easy-to-hard learning mechanism of human beings.
arXiv Detail & Related papers (2022-12-30T13:14:46Z) - A Functional Information Perspective on Model Interpretation [30.101107406343665]
This work suggests a theoretical framework for model interpretability.
We rely on the log-Sobolev inequality that bounds the functional entropy by the functional Fisher information.
We show that our method surpasses existing interpretability sampling-based methods on various data signals.
arXiv Detail & Related papers (2022-06-12T09:24:45Z) - Learning Summary Statistics for Bayesian Inference with Autoencoders [58.720142291102135]
We use the inner dimension of deep neural network based Autoencoders as summary statistics.
To create an incentive for the encoder to encode all the parameter-related information but not the noise, we give the decoder access to explicit or implicit information that has been used to generate the training data.
arXiv Detail & Related papers (2022-01-28T12:00:31Z) - Learning outside the Black-Box: The pursuit of interpretable models [78.32475359554395]
This paper proposes an algorithm that produces a continuous global interpretation of any given continuous black-box function.
Our interpretation represents a leap forward from the previous state of the art.
arXiv Detail & Related papers (2020-11-17T12:39:44Z) - Estimating Structural Target Functions using Machine Learning and
Influence Functions [103.47897241856603]
We propose a new framework for statistical machine learning of target functions arising as identifiable functionals from statistical models.
This framework is problem- and model-agnostic and can be used to estimate a broad variety of target parameters of interest in applied statistics.
We put particular focus on so-called coarsening at random/doubly robust problems with partially unobserved information.
arXiv Detail & Related papers (2020-08-14T16:48:29Z) - The data-driven physical-based equations discovery using evolutionary
approach [77.34726150561087]
We describe the algorithm for the mathematical equations discovery from the given observations data.
The algorithm combines genetic programming with the sparse regression.
It could be used for governing analytical equation discovery as well as for partial differential equations (PDE) discovery.
arXiv Detail & Related papers (2020-04-03T17:21:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.