論文の概要: Evaluating and Improving the Effectiveness of Synthetic Chest X-Rays for Medical Image Analysis
- arxiv url: http://arxiv.org/abs/2411.18602v1
- Date: Wed, 27 Nov 2024 18:47:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:25:27.503921
- Title: Evaluating and Improving the Effectiveness of Synthetic Chest X-Rays for Medical Image Analysis
- Title(参考訳): 医用画像解析における合成胸部X線の有用性の評価と改善
- Authors: Eva Prakash, Jeya Maria Jose Valanarasu, Zhihong Chen, Eduardo Pontes Reis, Andrew Johnston, Anuj Pareek, Christian Bluethgen, Sergios Gatidis, Cameron Olsen, Akshay Chaudhari, Andrew Ng, Curtis Langlotz,
- Abstract要約: 下流タスクのための合成胸部X線画像を生成するベストプラクティスは、単一放出ラベルの条件付けや、幾何学的に変換されたセグメンテーションマスクである。
提案手法は, プロキシモデルを用いたり, ラジオロジカルフィードバックを用いた合成データの質を向上させる手法である。
- 参考スコア(独自算出の注目度): 16.272529509870147
- License:
- Abstract: Purpose: To explore best-practice approaches for generating synthetic chest X-ray images and augmenting medical imaging datasets to optimize the performance of deep learning models in downstream tasks like classification and segmentation. Materials and Methods: We utilized a latent diffusion model to condition the generation of synthetic chest X-rays on text prompts and/or segmentation masks. We explored methods like using a proxy model and using radiologist feedback to improve the quality of synthetic data. These synthetic images were then generated from relevant disease information or geometrically transformed segmentation masks and added to ground truth training set images from the CheXpert, CANDID-PTX, SIIM, and RSNA Pneumonia datasets to measure improvements in classification and segmentation model performance on the test sets. F1 and Dice scores were used to evaluate classification and segmentation respectively. One-tailed t-tests with Bonferroni correction assessed the statistical significance of performance improvements with synthetic data. Results: Across all experiments, the synthetic data we generated resulted in a maximum mean classification F1 score improvement of 0.150453 (CI: 0.099108-0.201798; P=0.0031) compared to using only real data. For segmentation, the maximum Dice score improvement was 0.14575 (CI: 0.108267-0.183233; P=0.0064). Conclusion: Best practices for generating synthetic chest X-ray images for downstream tasks include conditioning on single-disease labels or geometrically transformed segmentation masks, as well as potentially using proxy modeling for fine-tuning such generations.
- Abstract(参考訳): 目的: 分類やセグメンテーションといった下流タスクにおける深層学習モデルの性能を最適化するために, 合成胸部X線画像の生成と医療画像データセットの増強のためのベストプラクティスを探る。
材料と方法:テキストプロンプトおよび/またはセグメンテーションマスクに合成胸部X線の発生を条件付けるために潜時拡散モデルを用いた。
提案手法は, プロキシモデルを用いたり, ラジオロジカルフィードバックを用いた合成データの質を向上させる手法である。
これらの合成画像は、関連する疾患情報や幾何学的に変換されたセグメンテーションマスクから生成され、CheXpert、CANDID-PTX、SIIM、RSNA Pneumoniaのデータセットから、テストセットの分類とセグメンテーションモデルの性能を改善するために、地上の真実トレーニングセットに追加された。
F1とDiceのスコアをそれぞれ分類とセグメンテーションの評価に用いた。
ボンフェロニ補正による片尾t検定は, 合成データによる性能改善の統計的意義を評価した。
結果: 実験結果から得られた合成データは, 実データに比較して平均値0.150453(CI: 0.099108-0.201798; P=0.0031)を最大値として, 平均値0.150453(CI: 0.099108-0.201798; P=0.0031)を達成できた。
セグメンテーションでは、最大Diceスコア改善は0.14575(CI: 0.108267-0.183233; P=0.0064)である。
結論: 下流タスクのために合成胸部X線画像を生成するためのベストプラクティスは、単一ディスリーズラベルや幾何学的に変換されたセグメンテーションマスクの条件付けや、そのような世代を微調整するためにプロキシモデリングを使用する可能性がある。
関連論文リスト
- Evaluating Utility of Memory Efficient Medical Image Generation: A Study on Lung Nodule Segmentation [0.0]
本研究は,合成医用画像を生成するためのメモリ効率のパッチワイド拡散確率モデル(DDPM)を提案する。
本手法は, メモリ制約を効率的に管理しながら, 結節分割による高能率合成画像を生成する。
本手法は,合成データのみに基づくセグメンテーションモデルのトレーニングと,合成画像を用いた実世界のトレーニングデータの拡張の2つのシナリオで評価する。
論文 参考訳(メタデータ) (2024-10-16T13:20:57Z) - Towards a Benchmark for Colorectal Cancer Segmentation in Endorectal Ultrasound Videos: Dataset and Model Development [59.74920439478643]
本稿では,多様なERUSシナリオをカバーする最初のベンチマークデータセットを収集し,注釈付けする。
ERUS-10Kデータセットは77の動画と10,000の高解像度アノテートフレームで構成されています。
本稿では,ASTR (Adaptive Sparse-context TRansformer) という大腸癌セグメンテーションのベンチマークモデルを提案する。
論文 参考訳(メタデータ) (2024-08-19T15:04:42Z) - Synthetically Enhanced: Unveiling Synthetic Data's Potential in Medical Imaging Research [4.475998415951477]
Generative AIは、合成画像を生成するための有望なアプローチを提供し、データセットの多様性を向上する。
本研究では, 医用画像研究の性能と一般化性に及ぼす合成データ補充の影響について検討した。
論文 参考訳(メタデータ) (2023-11-15T21:58:01Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
大腸内視鏡検査は臨床診断や治療に不可欠である。
注釈付きデータの不足は、既存の手法の有効性と一般化を制限する。
本稿では, 下流作業に有用な大腸内視鏡画像を生成するために, 適応Refinement Semantic Diffusion Model (ArSDM)を提案する。
論文 参考訳(メタデータ) (2023-09-03T07:55:46Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
ディープラーニングを医療分野に適用する上で最大の課題は、トレーニングデータの提供である。
データ拡張は、限られたデータセットに直面した時に機械学習で使用される典型的な方法論である。
本研究は, 新型コロナウイルスの胸部X線画像セットを限定して, StyleGAN2-ADAモデルを用いて訓練するものである。
論文 参考訳(メタデータ) (2023-04-18T15:39:58Z) - Mask-conditioned latent diffusion for generating gastrointestinal polyp
images [2.027538200191349]
本研究では,与えられたセグメンテーションマスクに条件付き合成GIポリプ画像を生成する条件付きDPMフレームワークを提案する。
本システムでは,ポリプの接地真実マスクを用いて,無限個の高忠実度合成ポリプ画像を生成することができる。
以上の結果から,実データと合成データの両方からなるトレーニングデータから,DeepLabv3+から0.7751の最適マイクロイモージョンIOUが得られた。
論文 参考訳(メタデータ) (2023-04-11T14:11:17Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
そこで本研究では,新しいタイプの識別器であるセグメンタを提案し,病変の正確な特定と擬似健康画像の視覚的品質の向上を図っている。
医用画像強調に生成画像を適用し,低コントラスト問題に対処するために拡張結果を利用する。
BraTSのT2モダリティに関する総合的な実験により、提案手法は最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2022-03-29T08:41:17Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Image Translation for Medical Image Generation -- Ischemic Stroke
Lesions [0.0]
注釈付き病理を持つ合成データベースは、必要なトレーニングデータを提供することができる。
画像から画像への変換モデルを訓練し、脳卒中病変を伴わない脳の容積の磁気共鳴像を合成する。
臨床例は10例, 50例に過ぎなかったが, 総合的なデータ拡張は有意な改善をもたらすことが示唆された。
論文 参考訳(メタデータ) (2020-10-05T09:12:28Z) - Detection of Coronavirus (COVID-19) Associated Pneumonia based on
Generative Adversarial Networks and a Fine-Tuned Deep Transfer Learning Model
using Chest X-ray Dataset [4.664495510551646]
本稿では, 限られたデータセットに対して, 微調整深層移動学習を施したGANを用いた肺炎胸部X線検出法を提案する。
この研究で使用されるデータセットは、正常と肺炎の2つのカテゴリを持つ5863のX線画像で構成されている。
論文 参考訳(メタデータ) (2020-04-02T08:14:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。