論文の概要: Lift3D Foundation Policy: Lifting 2D Large-Scale Pretrained Models for Robust 3D Robotic Manipulation
- arxiv url: http://arxiv.org/abs/2411.18623v2
- Date: Sat, 14 Dec 2024 18:38:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:50:14.931031
- Title: Lift3D Foundation Policy: Lifting 2D Large-Scale Pretrained Models for Robust 3D Robotic Manipulation
- Title(参考訳): Lift3Dファウンデーションポリシー:ロバストな3Dロボットマニピュレーションのための2次元大規模事前訓練モデル
- Authors: Yueru Jia, Jiaming Liu, Sixiang Chen, Chenyang Gu, Zhilue Wang, Longzan Luo, Lily Lee, Pengwei Wang, Zhongyuan Wang, Renrui Zhang, Shanghang Zhang,
- Abstract要約: Lift3Dは、ロバストな3D操作ポリシーを構築するために、暗黙的で明示的な3Dロボット表現で2Dファンデーションモデルを強化するフレームワークである。
実験では、Lift3Dはいくつかのシミュレーションベンチマークや実世界のシナリオで、最先端の手法を一貫して上回っている。
- 参考スコア(独自算出の注目度): 30.744137117668643
- License:
- Abstract: 3D geometric information is essential for manipulation tasks, as robots need to perceive the 3D environment, reason about spatial relationships, and interact with intricate spatial configurations. Recent research has increasingly focused on the explicit extraction of 3D features, while still facing challenges such as the lack of large-scale robotic 3D data and the potential loss of spatial geometry. To address these limitations, we propose the Lift3D framework, which progressively enhances 2D foundation models with implicit and explicit 3D robotic representations to construct a robust 3D manipulation policy. Specifically, we first design a task-aware masked autoencoder that masks task-relevant affordance patches and reconstructs depth information, enhancing the 2D foundation model's implicit 3D robotic representation. After self-supervised fine-tuning, we introduce a 2D model-lifting strategy that establishes a positional mapping between the input 3D points and the positional embeddings of the 2D model. Based on the mapping, Lift3D utilizes the 2D foundation model to directly encode point cloud data, leveraging large-scale pretrained knowledge to construct explicit 3D robotic representations while minimizing spatial information loss. In experiments, Lift3D consistently outperforms previous state-of-the-art methods across several simulation benchmarks and real-world scenarios.
- Abstract(参考訳): ロボットは3次元環境を知覚し、空間的関係を推論し、複雑な空間構成と相互作用する必要がある。
最近の研究は、大規模ロボット3Dデータの欠如や空間幾何学の潜在的な喪失といった課題に直面しながら、3D特徴の明示的な抽出に重点を置いている。
これらの制約に対処するために,ロバストな3D操作ポリシーを構築するために,暗黙的かつ明示的な3Dロボット表現で2D基盤モデルを段階的に拡張するLift3Dフレームワークを提案する。
具体的には、まずタスク対応マスク付きオートエンコーダを設計し、タスク関連価格パッチをマスクし、深度情報を再構築し、2Dファンデーションモデルの暗黙的な3Dロボット表現を強化する。
自己教師型微調整の後,入力された3D点と2Dモデルの位置埋め込みの間の位置マッピングを確立する2Dモデルリフト方式を導入する。
このマッピングに基づいて、Lift3Dは2Dファンデーションモデルを用いて、ポイントクラウドデータを直接エンコードし、大規模な事前訓練された知識を活用し、空間情報損失を最小限に抑えながら、明示的な3Dロボット表現を構築する。
実験では、Lift3Dはいくつかのシミュレーションベンチマークや実世界のシナリオで、最先端の手法を一貫して上回っている。
関連論文リスト
- DIRECT-3D: Learning Direct Text-to-3D Generation on Massive Noisy 3D Data [50.164670363633704]
テキストプロンプトから高品質な3Dアセットを作成するための拡散型3D生成モデルであるDIRECT-3Dを提案する。
我々のモデルは、広範に騒々しく不整合な3D資産で直接訓練されている。
単一クラス生成とテキスト・ツー・3D生成の両方で最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-06-06T17:58:15Z) - SUGAR: Pre-training 3D Visual Representations for Robotics [85.55534363501131]
ロボット工学のための新しい3D事前学習フレームワークSUGARを紹介した。
SUGARは3次元の点雲を通してオブジェクトの意味的、幾何学的、および余分な特性をキャプチャする。
SuGARの3D表現は最先端の2Dおよび3D表現よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-04-01T21:23:03Z) - Act3D: 3D Feature Field Transformers for Multi-Task Robotic Manipulation [18.964403296437027]
Act3Dは、手作業に依存する適応的な解像度を持つ3D特徴体を用いて、ロボットのワークスペースを表現する。
粗い方法で3Dポイントグリッドをサンプリングし、相対的な位置の注意を使ってそれらを巧みに加工し、次の点サンプリングのラウンドにフォーカスする場所を選択する。
論文 参考訳(メタデータ) (2023-06-30T17:34:06Z) - Lift3D: Synthesize 3D Training Data by Lifting 2D GAN to 3D Generative
Radiance Field [16.15190186574068]
データ生成の目的を達成するために,逆2D-to-3D生成フレームワークであるLift3Dを提案する。
2D GANを3DオブジェクトNeRFに持ち上げることで、Lift3Dは生成されたオブジェクトの明示的な3D情報を提供する。
我々は、自律運転データセットを増強することで、我々のフレームワークの有効性を評価する。
論文 参考訳(メタデータ) (2023-04-07T07:43:02Z) - Joint-MAE: 2D-3D Joint Masked Autoencoders for 3D Point Cloud
Pre-training [65.75399500494343]
Masked Autoencoders (MAE) は、2Dおよび3Dコンピュータビジョンのための自己教師型学習において有望な性能を示した。
自己監督型3次元点雲事前学習のための2D-3DジョイントMAEフレームワークであるJoint-MAEを提案する。
論文 参考訳(メタデータ) (2023-02-27T17:56:18Z) - Gait Recognition in the Wild with Dense 3D Representations and A
Benchmark [86.68648536257588]
既存の歩行認識の研究は、制約されたシーンにおける人間の体のシルエットや骨格のような2D表現によって支配されている。
本稿では,野生における歩行認識のための高密度な3次元表現の探索を目的とする。
大規模な3D表現に基づく歩行認識データセットGait3Dを構築した。
論文 参考訳(メタデータ) (2022-04-06T03:54:06Z) - AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection [15.244852122106634]
形状認識型2D/3D制約を3D検出フレームワークに組み込む手法を提案する。
具体的には、ディープニューラルネットワークを用いて、2次元画像領域の区別された2Dキーポイントを学習する。
2D/3Dキーポイントの基礎的真理を生成するために、自動的なモデル適合手法が提案されている。
論文 参考訳(メタデータ) (2021-08-25T08:50:06Z) - 3D-to-2D Distillation for Indoor Scene Parsing [78.36781565047656]
大規模3次元データリポジトリから抽出した3次元特徴を有効活用し,RGB画像から抽出した2次元特徴を向上する手法を提案する。
まず,事前学習した3Dネットワークから3D知識を抽出して2Dネットワークを監督し,トレーニング中の2D特徴からシミュレーションされた3D特徴を学習する。
次に,2次元の正規化方式を設計し,2次元特徴と3次元特徴のキャリブレーションを行った。
第3に,非ペアの3dデータを用いたトレーニングのフレームワークを拡張するために,意味を意識した対向的トレーニングモデルを設計した。
論文 参考訳(メタデータ) (2021-04-06T02:22:24Z) - Cylinder3D: An Effective 3D Framework for Driving-scene LiDAR Semantic
Segmentation [87.54570024320354]
大規模運転シーンのLiDARセマンティックセマンティックセグメンテーションのための最先端の手法は、しばしば2D空間の点雲を投影して処理する。
3D-to-2Dプロジェクションの問題に取り組むための簡単な解決策は、3D表現を保ち、3D空間の点を処理することである。
我々は3次元シリンダー分割と3次元シリンダー畳み込みに基づくフレームワークをCylinder3Dとして開発し,3次元トポロジの関係と運転シーンの点雲の構造を利用する。
論文 参考訳(メタデータ) (2020-08-04T13:56:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。