論文の概要: Bi-ICE: An Inner Interpretable Framework for Image Classification via Bi-directional Interactions between Concept and Input Embeddings
- arxiv url: http://arxiv.org/abs/2411.18645v1
- Date: Tue, 26 Nov 2024 19:52:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:21:55.975981
- Title: Bi-ICE: An Inner Interpretable Framework for Image Classification via Bi-directional Interactions between Concept and Input Embeddings
- Title(参考訳): Bi-ICE:概念と入力の埋め込み間の双方向インタラクションによる画像分類のための内部解釈可能なフレームワーク
- Authors: Jinyung Hong, Yearim Kim, Keun Hee Park, Sangyu Han, Nojun Kwak, Theodore P. Pavlic,
- Abstract要約: 内的解釈性は、AIシステムの内部メカニズムを明らかにすることに焦点を当てた、有望な分野である。
まず,大規模画像分類タスクにおいて,内部解釈可能性と多段階解析をサポートする概念的枠組みを提案する。
本稿では,概念と入力の埋め込み(Bi-ICE)モジュールの双方向インタラクションについて紹介する。
- 参考スコア(独自算出の注目度): 22.31721412650966
- License:
- Abstract: Inner interpretability is a promising field focused on uncovering the internal mechanisms of AI systems and developing scalable, automated methods to understand these systems at a mechanistic level. While significant research has explored top-down approaches starting from high-level problems or algorithmic hypotheses and bottom-up approaches building higher-level abstractions from low-level or circuit-level descriptions, most efforts have concentrated on analyzing large language models. Moreover, limited attention has been given to applying inner interpretability to large-scale image tasks, primarily focusing on architectural and functional levels to visualize learned concepts. In this paper, we first present a conceptual framework that supports inner interpretability and multilevel analysis for large-scale image classification tasks. We introduce the Bi-directional Interaction between Concept and Input Embeddings (Bi-ICE) module, which facilitates interpretability across the computational, algorithmic, and implementation levels. This module enhances transparency by generating predictions based on human-understandable concepts, quantifying their contributions, and localizing them within the inputs. Finally, we showcase enhanced transparency in image classification, measuring concept contributions and pinpointing their locations within the inputs. Our approach highlights algorithmic interpretability by demonstrating the process of concept learning and its convergence.
- Abstract(参考訳): 内部解釈性は、AIシステムの内部メカニズムを明らかにし、これらのシステムを機械的なレベルで理解するためのスケーラブルで自動化された手法を開発することに焦点を当てた、有望な分野である。
重要な研究は、高レベル問題やアルゴリズム仮説から始まるトップダウンアプローチや、低レベルまたはサーキットレベルの記述から高レベルな抽象化を構築するボトムアップアプローチを探索してきたが、ほとんどの研究は大規模言語モデルの分析に集中してきた。
さらに、大規模画像タスクに内的解釈可能性を適用し、主に学習概念を視覚化するアーキテクチャや機能レベルに焦点を当てることにも注意が向けられている。
本稿では,大規模画像分類タスクにおいて,内部解釈可能性と多段階解析をサポートする概念的枠組みを提案する。
本稿では,概念と入力の埋め込み(Bi-ICE)モジュールの双方向インタラクションについて紹介する。
このモジュールは、人間の理解可能な概念に基づいて予測を生成し、コントリビューションを定量化し、入力内でそれらをローカライズすることで透明性を高める。
最後に、画像分類における透明性の向上、概念貢献度の測定、入力内の位置の特定について紹介する。
提案手法は,概念学習のプロセスとその収束を実証することにより,アルゴリズムの解釈可能性を強調する。
関連論文リスト
- Decompose the model: Mechanistic interpretability in image models with Generalized Integrated Gradients (GIG) [24.02036048242832]
本稿では,すべての中間層を経由した入力から,データセット全体の最終的な出力まで,経路全体をトレースする新しい手法を提案する。
本稿では,PFV(Pointwise Feature Vectors)とERF(Effective Receptive Fields)を用いて,モデル埋め込みを解釈可能な概念ベクトルに分解する。
そして,汎用統合勾配(GIG)を用いて概念ベクトル間の関係を計算し,モデル行動の包括的,データセットワイドな解析を可能にする。
論文 参考訳(メタデータ) (2024-09-03T05:19:35Z) - Coding for Intelligence from the Perspective of Category [66.14012258680992]
符号化の対象はデータの圧縮と再構成、インテリジェンスである。
最近の傾向は、これらの2つの分野の潜在的均一性を示している。
本稿では,カテゴリ理論の観点から,インテリジェンスのためのコーディングの新たな問題を提案する。
論文 参考訳(メタデータ) (2024-07-01T07:05:44Z) - LLM-based Hierarchical Concept Decomposition for Interpretable Fine-Grained Image Classification [5.8754760054410955]
構造化概念解析によるモデル解釈可能性の向上を目的とした新しいフレームワークである textttHi-CoDecomposition を紹介する。
われわれのアプローチは、最先端のモデルの性能だけでなく、意思決定プロセスに対する明確な洞察を提供することで透明性を向上する。
論文 参考訳(メタデータ) (2024-05-29T00:36:56Z) - Advancing Ante-Hoc Explainable Models through Generative Adversarial Networks [24.45212348373868]
本稿では,視覚的分類タスクにおけるモデル解釈可能性と性能を向上させるための新しい概念学習フレームワークを提案する。
本手法では, 教師なし説明生成器を一次分類器ネットワークに付加し, 対角訓練を利用する。
この研究は、タスク整合概念表現を用いた本質的に解釈可能なディープビジョンモデルを構築するための重要なステップを示す。
論文 参考訳(メタデータ) (2024-01-09T16:16:16Z) - Coarse-to-Fine Concept Bottleneck Models [9.910980079138206]
この研究は、アンテホック解釈可能性、特に概念ボトルネックモデル(CBM)をターゲットにしている。
我々のゴールは、人間の理解可能な概念を2段階の粒度で、高度に解釈可能な意思決定プロセスを認めるフレームワークを設計することである。
この枠組みでは、概念情報は全体像と一般的な非構造概念の類似性にのみ依存せず、画像シーンのパッチ固有の領域に存在するより粒度の細かい概念情報を発見・活用するために概念階層の概念を導入している。
論文 参考訳(メタデータ) (2023-10-03T14:57:31Z) - Rewrite Caption Semantics: Bridging Semantic Gaps for
Language-Supervised Semantic Segmentation [100.81837601210597]
本研究では,事前学習データにおける視覚的意味論とテキスト的意味論のギャップを埋めるための概念キュレーション(CoCu)を提案する。
CoCuは、最高にゼロショット転送性能を達成し、言語教師ありセグメンテーションベースラインを大きなマージンで大幅に向上させる。
論文 参考訳(メタデータ) (2023-09-24T00:05:39Z) - Unsupervised Interpretable Basis Extraction for Concept-Based Visual
Explanations [53.973055975918655]
提案手法を用いて抽出したベースに変換すると,中間層表現がより解釈可能であることを示す。
提案手法は,提案手法を教師付きアプローチから抽出したベースと,教師付き手法から抽出したベースを比較した結果,教師なし手法は教師付き手法の限界を構成する強みを有し,今後の研究の方向性を示す。
論文 参考訳(メタデータ) (2023-03-19T00:37:19Z) - Variational Structured Attention Networks for Deep Visual Representation
Learning [49.80498066480928]
空間的注意マップとチャネル的注意の両方を原則的に共同学習するための統合的深層フレームワークを提案する。
具体的には,確率的表現学習フレームワークに注目度の推定と相互作用を統合する。
ニューラルネットワーク内で推論ルールを実装し,確率パラメータとcnnフロントエンドパラメータのエンドツーエンド学習を可能にする。
論文 参考訳(メタデータ) (2021-03-05T07:37:24Z) - Investigating Bi-Level Optimization for Learning and Vision from a
Unified Perspective: A Survey and Beyond [114.39616146985001]
機械学習やコンピュータビジョンの分野では、モチベーションやメカニズムが異なるにもかかわらず、複雑な問題の多くは、一連の密接に関連するサブプロトコルを含んでいる。
本稿では,BLO(Bi-Level Optimization)の観点から,これらの複雑な学習と視覚問題を一様に表現する。
次に、値関数に基づく単一レベル再構成を構築し、主流勾配に基づくBLO手法を理解し、定式化するための統一的なアルゴリズムフレームワークを確立する。
論文 参考訳(メタデータ) (2021-01-27T16:20:23Z) - Concept Learners for Few-Shot Learning [76.08585517480807]
本研究では,人間の解釈可能な概念次元に沿って学習することで,一般化能力を向上させるメタ学習手法であるCOMETを提案する。
我々は,細粒度画像分類,文書分類,セルタイプアノテーションなど,さまざまな領域からの少数ショットタスクによるモデルの評価を行った。
論文 参考訳(メタデータ) (2020-07-14T22:04:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。