Improving VAE-based Representation Learning
- URL: http://arxiv.org/abs/2205.14539v1
- Date: Sat, 28 May 2022 23:00:18 GMT
- Title: Improving VAE-based Representation Learning
- Authors: Mingtian Zhang and Tim Z. Xiao and Brooks Paige and David Barber
- Abstract summary: We study what properties are required for good representations and how different VAE structure choices could affect the learned properties.
We show that by using a decoder that prefers to learn local features, the remaining global features can be well captured by the latent.
- Score: 26.47244578124654
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Latent variable models like the Variational Auto-Encoder (VAE) are commonly
used to learn representations of images. However, for downstream tasks like
semantic classification, the representations learned by VAE are less
competitive than other non-latent variable models. This has led to some
speculations that latent variable models may be fundamentally unsuitable for
representation learning. In this work, we study what properties are required
for good representations and how different VAE structure choices could affect
the learned properties. We show that by using a decoder that prefers to learn
local features, the remaining global features can be well captured by the
latent, which significantly improves performance of a downstream classification
task. We further apply the proposed model to semi-supervised learning tasks and
demonstrate improvements in data efficiency.
Related papers
- DETAIL: Task DEmonsTration Attribution for Interpretable In-context Learning [75.68193159293425]
In-context learning (ICL) allows transformer-based language models to learn a specific task with a few "task demonstrations" without updating their parameters.
We propose an influence function-based attribution technique, DETAIL, that addresses the specific characteristics of ICL.
We experimentally prove the wide applicability of DETAIL by showing our attribution scores obtained on white-box models are transferable to black-box models in improving model performance.
arXiv Detail & Related papers (2024-05-22T15:52:52Z) - A Probabilistic Model Behind Self-Supervised Learning [53.64989127914936]
In self-supervised learning (SSL), representations are learned via an auxiliary task without annotated labels.
We present a generative latent variable model for self-supervised learning.
We show that several families of discriminative SSL, including contrastive methods, induce a comparable distribution over representations.
arXiv Detail & Related papers (2024-02-02T13:31:17Z) - Flow Factorized Representation Learning [109.51947536586677]
We introduce a generative model which specifies a distinct set of latent probability paths that define different input transformations.
We show that our model achieves higher likelihoods on standard representation learning benchmarks while simultaneously being closer to approximately equivariant models.
arXiv Detail & Related papers (2023-09-22T20:15:37Z) - MT-SLVR: Multi-Task Self-Supervised Learning for Transformation
In(Variant) Representations [2.94944680995069]
We propose a multi-task self-supervised framework (MT-SLVR) that learns both variant and invariant features in a parameter-efficient manner.
We evaluate our approach on few-shot classification tasks drawn from a variety of audio domains and demonstrate improved classification performance.
arXiv Detail & Related papers (2023-05-29T09:10:50Z) - Interpretable Sentence Representation with Variational Autoencoders and
Attention [0.685316573653194]
We develop methods to enhance the interpretability of recent representation learning techniques in natural language processing (NLP)
We leverage Variational Autoencoders (VAEs) due to their efficiency in relating observations to latent generative factors.
We build two models with inductive bias to separate information in latent representations into understandable concepts without annotated data.
arXiv Detail & Related papers (2023-05-04T13:16:15Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
Self-supervision based on the information extracted from large knowledge graphs has been shown to improve the generalization of language models.
We study the effect of knowledge sampling strategies and sizes that can be used to generate synthetic data for adapting language models.
arXiv Detail & Related papers (2022-05-21T19:49:04Z) - An Empirical Investigation of Representation Learning for Imitation [76.48784376425911]
Recent work in vision, reinforcement learning, and NLP has shown that auxiliary representation learning objectives can reduce the need for large amounts of expensive, task-specific data.
We propose a modular framework for constructing representation learning algorithms, then use our framework to evaluate the utility of representation learning for imitation.
arXiv Detail & Related papers (2022-05-16T11:23:42Z) - High Fidelity Visualization of What Your Self-Supervised Representation
Knows About [22.982471878833362]
In this work, we showcase the use of a conditional diffusion based generative model (RCDM) to visualize representations learned with self-supervised models.
We demonstrate how this model's generation quality is on par with state-of-the-art generative models while being faithful to the representation used as conditioning.
arXiv Detail & Related papers (2021-12-16T19:23:33Z) - Demystifying Contrastive Self-Supervised Learning: Invariances,
Augmentations and Dataset Biases [34.02639091680309]
Recent gains in performance come from training instance classification models, treating each image and it's augmented versions as samples of a single class.
We demonstrate that approaches like MOCO and PIRL learn occlusion-invariant representations.
Second, we demonstrate that these approaches obtain further gains from access to a clean object-centric training dataset like Imagenet.
arXiv Detail & Related papers (2020-07-28T00:11:31Z) - Guided Variational Autoencoder for Disentanglement Learning [79.02010588207416]
We propose an algorithm, guided variational autoencoder (Guided-VAE), that is able to learn a controllable generative model by performing latent representation disentanglement learning.
We design an unsupervised strategy and a supervised strategy in Guided-VAE and observe enhanced modeling and controlling capability over the vanilla VAE.
arXiv Detail & Related papers (2020-04-02T20:49:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.