Foundation Models in Radiology: What, How, When, Why and Why Not
- URL: http://arxiv.org/abs/2411.18730v2
- Date: Thu, 06 Feb 2025 23:34:37 GMT
- Title: Foundation Models in Radiology: What, How, When, Why and Why Not
- Authors: Magdalini Paschali, Zhihong Chen, Louis Blankemeier, Maya Varma, Alaa Youssef, Christian Bluethgen, Curtis Langlotz, Sergios Gatidis, Akshay Chaudhari,
- Abstract summary: Recent advances in artificial intelligence have witnessed the emergence of large-scale deep learning models capable of interpreting and generating both textual and imaging data.
Foundation models have recently received extensive attention from academic, industry, and regulatory bodies.
This review aims to establish a standardized terminology concerning foundation models.
- Score: 15.314933454351674
- License:
- Abstract: Recent advances in artificial intelligence have witnessed the emergence of large-scale deep learning models capable of interpreting and generating both textual and imaging data. Such models, typically referred to as foundation models, are trained on extensive corpora of unlabeled data and demonstrate high performance across various tasks. Foundation models have recently received extensive attention from academic, industry, and regulatory bodies. Given the potentially transformative impact that foundation models can have on the field of radiology, this review aims to establish a standardized terminology concerning foundation models, with a specific focus on the requirements of training data, model training paradigms, model capabilities, and evaluation strategies. We further outline potential pathways to facilitate the training of radiology-specific foundation models, with a critical emphasis on elucidating both the benefits and challenges associated with such models. Overall, we envision that this review can unify technical advances and clinical needs in the training of foundation models for radiology in a safe and responsible manner, for ultimately benefiting patients, providers, and radiologists.
Related papers
- Exploring Foundation Models for Synthetic Medical Imaging: A Study on Chest X-Rays and Fine-Tuning Techniques [0.49000940389224884]
Machine learning has significantly advanced healthcare by aiding in disease prevention and treatment identification.
However, accessing patient data can be challenging due to privacy concerns and strict regulations.
Recent studies suggest that fine-tuning foundation models can produce such data effectively.
arXiv Detail & Related papers (2024-09-06T17:36:08Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
utilizing EHR data for predictive modeling presents several challenges due to its unique characteristics.
Deep learning has demonstrated its superiority in various applications, including healthcare.
arXiv Detail & Related papers (2024-02-02T00:31:01Z) - Foundational Models in Medical Imaging: A Comprehensive Survey and
Future Vision [6.2847894163744105]
Foundation models are large-scale, pre-trained deep-learning models adapted to a wide range of downstream tasks.
These models facilitate contextual reasoning, generalization, and prompt capabilities at test time.
Capitalizing on the advances in computer vision, medical imaging has also marked a growing interest in these models.
arXiv Detail & Related papers (2023-10-28T12:08:12Z) - Learning from models beyond fine-tuning [78.20895343699658]
Learn From Model (LFM) focuses on the research, modification, and design of foundation models (FM) based on the model interface.
The study of LFM techniques can be broadly categorized into five major areas: model tuning, model distillation, model reuse, meta learning and model editing.
This paper gives a comprehensive review of the current methods based on FM from the perspective of LFM.
arXiv Detail & Related papers (2023-10-12T10:20:36Z) - Foundational Models Defining a New Era in Vision: A Survey and Outlook [151.49434496615427]
Vision systems to see and reason about the compositional nature of visual scenes are fundamental to understanding our world.
The models learned to bridge the gap between such modalities coupled with large-scale training data facilitate contextual reasoning, generalization, and prompt capabilities at test time.
The output of such models can be modified through human-provided prompts without retraining, e.g., segmenting a particular object by providing a bounding box, having interactive dialogues by asking questions about an image or video scene or manipulating the robot's behavior through language instructions.
arXiv Detail & Related papers (2023-07-25T17:59:18Z) - Empirical Analysis of a Segmentation Foundation Model in Prostate
Imaging [9.99042549094606]
We consider a recently developed foundation model for medical image segmentation, UniverSeg.
We conduct an empirical evaluation study in the context of prostate imaging and compare it against the conventional approach of training a task-specific segmentation model.
arXiv Detail & Related papers (2023-07-06T20:00:52Z) - On the Challenges and Perspectives of Foundation Models for Medical
Image Analysis [17.613533812925635]
Medical foundation models have immense potential in solving a wide range of downstream tasks.
They can help to accelerate the development of accurate and robust models, reduce the large amounts of required labeled data, preserve the privacy and confidentiality of patient data.
arXiv Detail & Related papers (2023-06-09T06:54:58Z) - Safe AI for health and beyond -- Monitoring to transform a health
service [51.8524501805308]
We will assess the infrastructure required to monitor the outputs of a machine learning algorithm.
We will present two scenarios with examples of monitoring and updates of models.
arXiv Detail & Related papers (2023-03-02T17:27:45Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
Medical ultrasound imaging relies heavily on high-quality signal processing to provide reliable and interpretable image reconstructions.
Deep learning based methods, which are optimized in a data-driven fashion, have gained popularity.
A relatively new paradigm combines the power of the two: leveraging data-driven deep learning, as well as exploiting domain knowledge.
arXiv Detail & Related papers (2022-04-09T13:04:36Z) - On the Opportunities and Risks of Foundation Models [256.61956234436553]
We call these models foundation models to underscore their critically central yet incomplete character.
This report provides a thorough account of the opportunities and risks of foundation models.
To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration.
arXiv Detail & Related papers (2021-08-16T17:50:08Z) - Key Technology Considerations in Developing and Deploying Machine
Learning Models in Clinical Radiology Practice [0.0]
We propose a list of key considerations that machine learning researchers must recognize and address to make their models accurate, robust, and usable in practice.
Namely, we discuss: insufficient training data, decentralized datasets, high cost of annotations, ambiguous ground truth, imbalance in class representation, asymmetric misclassification costs, relevant performance metrics, generalization of models to unseen datasets, model decay, adversarial attacks, explainability, fairness and bias, and clinical validation.
arXiv Detail & Related papers (2021-02-03T09:53:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.