論文の概要: CoVis: A Collaborative Framework for Fine-grained Graphic Visual Understanding
- arxiv url: http://arxiv.org/abs/2411.18764v1
- Date: Wed, 27 Nov 2024 21:38:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:22:16.289177
- Title: CoVis: A Collaborative Framework for Fine-grained Graphic Visual Understanding
- Title(参考訳): CoVis: きめ細かいグラフィカルなビジュアル理解のための協調フレームワーク
- Authors: Xiaoyu Deng, Zhengjian Kang, Xintao Li, Yongzhe Zhang, Tianmin Guo,
- Abstract要約: CoVisは、きめ細かい視覚的理解のための協調的なフレームワークである。
カスケード二重層セグメンテーションネットワークの設計と実装により、画像からできるだけ多くの知識を抽出する。
画像の視覚分析を生成し、より総合的な視点から画像の理解を支援する。
- 参考スコア(独自算出の注目度): 0.29127054707887967
- License:
- Abstract: Graphic visual content helps in promoting information communication and inspiration divergence. However, the interpretation of visual content currently relies mainly on humans' personal knowledge background, thereby affecting the quality and efficiency of information acquisition and understanding. To improve the quality and efficiency of visual information transmission and avoid the limitation of the observer due to the information cocoon, we propose CoVis, a collaborative framework for fine-grained visual understanding. By designing and implementing a cascaded dual-layer segmentation network coupled with a large-language-model (LLM) based content generator, the framework extracts as much knowledge as possible from an image. Then, it generates visual analytics for images, assisting observers in comprehending imagery from a more holistic perspective. Quantitative experiments and qualitative experiments based on 32 human participants indicate that the CoVis has better performance than current methods in feature extraction and can generate more comprehensive and detailed visual descriptions than current general-purpose large models.
- Abstract(参考訳): グラフィックビジュアルコンテンツは、情報通信とインスピレーションの拡散を促進するのに役立つ。
しかし、現在、視覚内容の解釈は、主に人間の個人的知識の背景に依存しており、情報取得と理解の質と効率に影響を与える。
視覚情報伝達の質と効率を向上させるとともに、情報コクーンによる観察者の制限を回避するために、細粒度視覚理解のための協調的なフレームワークであるCoVisを提案する。
大規模言語モデル(LLM)ベースのコンテンツジェネレータと組み合わせたケースケード二重層セグメンテーションネットワークの設計と実装により、このフレームワークは画像から可能な限り多くの知識を抽出する。
そして、画像の視覚分析を生成し、より総合的な視点から画像を解釈する観察者を支援する。
32人の被験者に基づく定量的実験と定性的実験は、CoVisが現在の特徴抽出法よりも優れた性能を示し、現在の汎用大規模モデルよりも包括的で詳細な視覚的記述を生成できることを示している。
関連論文リスト
- VipAct: Visual-Perception Enhancement via Specialized VLM Agent Collaboration and Tool-use [74.39058448757645]
視覚言語モデル(VLM)を強化するエージェントフレームワークであるVipActを提案する。
VipActは、タスク要求の分析、計画、調整を管理するオーケストレータエージェントと、特定のタスクを処理する専門エージェントで構成される。
様々な視覚認知タスクを特徴とするベンチマーク上でのVipActの評価を行い,実験結果から大幅な性能向上が得られた。
論文 参考訳(メタデータ) (2024-10-21T18:10:26Z) - Enhancing Graph Contrastive Learning with Reliable and Informative Augmentation for Recommendation [84.45144851024257]
CoGCLは、離散コードを通じてより強力な協調情報でコントラスト的なビューを構築することで、グラフのコントラスト学習を強化することを目的としている。
ユーザとアイテムの表現を離散コードに定量化するために,マルチレベルベクトル量化器をエンドツーエンドで導入する。
近傍構造に対しては,離散符号を仮想隣人として扱うことにより,仮想隣人拡張を提案する。
意味的関連性については、共有された離散コードと相互作用ターゲットに基づいて類似のユーザ/イテムを識別し、意味的関連性のあるビューを生成する。
論文 参考訳(メタデータ) (2024-09-09T14:04:17Z) - Enhancing Vision Models for Text-Heavy Content Understanding and Interaction [0.0]
画像エンコーディングのためのCLIPとMassive Text Embedding Benchmarkのモデルを統合したビジュアルチャットアプリケーションを構築した。
プロジェクトの目的は、複雑な視覚的テキストデータ相互接続データの理解において、先進視覚モデルの能力を高め、強化することである。
論文 参考訳(メタデータ) (2024-05-31T15:17:47Z) - InsightSee: Advancing Multi-agent Vision-Language Models for Enhanced Visual Understanding [12.082379948480257]
本稿では,複雑な視覚理解シナリオを扱う上で,視覚言語モデルの能力を高めるためのマルチエージェントフレームワークであるInsightSeeを提案する。
このフレームワークは、視覚情報解釈のプロセスを洗練するために統合される記述エージェントと、2つの推論エージェントと決定エージェントとを含む。
このフレームワークは、9つのベンチマークテストのうち6つで最先端のアルゴリズムよりも優れており、マルチモーダル理解が大幅に進歩している。
論文 参考訳(メタデータ) (2024-05-31T13:56:55Z) - Visual Analytics for Efficient Image Exploration and User-Guided Image
Captioning [35.47078178526536]
事前訓練された大規模言語画像モデルの最近の進歩は、視覚的理解の新しい時代を後押ししている。
本稿では,視覚分析の領域でよく知られた2つの問題に取り組み,(1)大規模画像データセットの効率的な探索と潜在的なデータバイアスの同定,(2)画像キャプションの評価と生成過程のステアリングを行う。
論文 参考訳(メタデータ) (2023-11-02T06:21:35Z) - Understanding ME? Multimodal Evaluation for Fine-grained Visual
Commonsense [98.70218717851665]
モデルが、限られた評価データ資源のために、視覚的シーンと基礎となるコモンセンス知識を本当に理解しているかどうかは不明だ。
本稿では,視覚シーン,テキスト,関連知識に対するモデルの理解をテストするために,質問応答ペアを自動的に生成するマルチモーダル評価(ME)パイプラインを提案する。
次に、MEデータによるトレーニングが標準VCR評価におけるモデルの性能を高めることを示すために、さらに一歩踏み出します。
論文 参考訳(メタデータ) (2022-11-10T21:44:33Z) - K-LITE: Learning Transferable Visual Models with External Knowledge [242.3887854728843]
K-LITE (Knowledge-augmented Language- Image Training and Evaluation) は、外部知識を活用して伝達可能な視覚システムを構築する戦略である。
トレーニングでは、WordNetとWiktionaryの知識で自然言語のエンティティを豊かにする。
評価において、自然言語は外部知識で拡張され、学習された視覚概念を参照するために使用される。
論文 参考訳(メタデータ) (2022-04-20T04:47:01Z) - Knowledge Graph Augmented Network Towards Multiview Representation
Learning for Aspect-based Sentiment Analysis [96.53859361560505]
本稿では,知識グラフ拡張ネットワーク(KGAN)を提案する。
KGANは感情の特徴表現を、文脈、構文、知識に基づく複数の視点から捉えている。
3つの人気のあるABSAベンチマークの実験は、我々のKGANの有効性と堅牢性を示している。
論文 参考訳(メタデータ) (2022-01-13T08:25:53Z) - Object Relational Graph with Teacher-Recommended Learning for Video
Captioning [92.48299156867664]
本稿では,新しいモデルと効果的なトレーニング戦略の両方を含む完全なビデオキャプションシステムを提案する。
具体的には,オブジェクトリレーショナルグラフ(ORG)に基づくエンコーダを提案する。
一方,教師推薦学習(TRL)手法を設計し,成功した外部言語モデル(ELM)をフル活用し,豊富な言語知識をキャプションモデルに統合する。
論文 参考訳(メタデータ) (2020-02-26T15:34:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。