論文の概要: VipAct: Visual-Perception Enhancement via Specialized VLM Agent Collaboration and Tool-use
- arxiv url: http://arxiv.org/abs/2410.16400v1
- Date: Mon, 21 Oct 2024 18:10:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:29:12.000468
- Title: VipAct: Visual-Perception Enhancement via Specialized VLM Agent Collaboration and Tool-use
- Title(参考訳): VipAct: 特殊化VLMエージェントコラボレーションとツール利用による視覚知覚の強化
- Authors: Zhehao Zhang, Ryan Rossi, Tong Yu, Franck Dernoncourt, Ruiyi Zhang, Jiuxiang Gu, Sungchul Kim, Xiang Chen, Zichao Wang, Nedim Lipka,
- Abstract要約: 視覚言語モデル(VLM)を強化するエージェントフレームワークであるVipActを提案する。
VipActは、タスク要求の分析、計画、調整を管理するオーケストレータエージェントと、特定のタスクを処理する専門エージェントで構成される。
様々な視覚認知タスクを特徴とするベンチマーク上でのVipActの評価を行い,実験結果から大幅な性能向上が得られた。
- 参考スコア(独自算出の注目度): 74.39058448757645
- License:
- Abstract: While vision-language models (VLMs) have demonstrated remarkable performance across various tasks combining textual and visual information, they continue to struggle with fine-grained visual perception tasks that require detailed pixel-level analysis. Effectively eliciting comprehensive reasoning from VLMs on such intricate visual elements remains an open challenge. In this paper, we present VipAct, an agent framework that enhances VLMs by integrating multi-agent collaboration and vision expert models, enabling more precise visual understanding and comprehensive reasoning. VipAct consists of an orchestrator agent, which manages task requirement analysis, planning, and coordination, along with specialized agents that handle specific tasks such as image captioning and vision expert models that provide high-precision perceptual information. This multi-agent approach allows VLMs to better perform fine-grained visual perception tasks by synergizing planning, reasoning, and tool use. We evaluate VipAct on benchmarks featuring a diverse set of visual perception tasks, with experimental results demonstrating significant performance improvements over state-of-the-art baselines across all tasks. Furthermore, comprehensive ablation studies reveal the critical role of multi-agent collaboration in eliciting more detailed System-2 reasoning and highlight the importance of image input for task planning. Additionally, our error analysis identifies patterns of VLMs' inherent limitations in visual perception, providing insights into potential future improvements. VipAct offers a flexible and extensible framework, paving the way for more advanced visual perception systems across various real-world applications.
- Abstract(参考訳): 視覚言語モデル(VLM)は、テキスト情報と視覚情報を組み合わせた様々なタスクにおいて顕著な性能を示してきたが、詳細なピクセルレベルの分析を必要とする細粒度の視覚知覚タスクに苦戦し続けている。
このような複雑な視覚要素に対するVLMからの包括的推論を効果的に引き出すことは、未解決の課題である。
本稿では、マルチエージェントコラボレーションとビジョンエキスパートモデルを統合することで、VLMを強化し、より正確な視覚的理解と包括的な推論を可能にするエージェントフレームワークであるVipActを提案する。
VipActは、タスク要求の分析、計画、調整を管理するオーケストレータエージェントと、高精度の知覚情報を提供するイメージキャプションやビジョンエキスパートモデルのような特定のタスクを扱う専門エージェントで構成されている。
このマルチエージェントアプローチにより、VLMは計画、推論、ツールの使用を相乗化することによって、よりきめ細かい視覚的知覚タスクをより良く実行することができる。
様々な視覚認知タスクを特徴とするベンチマーク上でのVipActの評価を行い,すべてのタスクにおける最先端のベースラインよりも優れた性能向上を示す実験結果を得た。
さらに、総合的なアブレーション研究により、より詳細なSystem-2推論を導き出す上で、マルチエージェントコラボレーションが重要な役割を担い、タスク計画におけるイメージインプットの重要性を強調している。
さらに,視覚知覚におけるVLMの本質的限界のパターンを同定し,将来的な改善の可能性について考察する。
VipActはフレキシブルで拡張可能なフレームワークを提供し、様々な現実世界のアプリケーションにまたがってより高度な視覚認識システムを実現する。
関連論文リスト
- Enhanced Multimodal RAG-LLM for Accurate Visual Question Answering [10.505845766495128]
MLLM(Multimodal large language model)は、視覚とテキストのモダリティの統合において大きな進歩を遂げた。
マルチモーダル検索拡張生成(RAG)に基づく新しいフレームワークを提案する。
RAGは、画像内のオブジェクト認識、関係識別、空間的理解を強化するために構造化されたシーングラフを導入している。
論文 参考訳(メタデータ) (2024-12-30T13:16:08Z) - Task Preference Optimization: Improving Multimodal Large Language Models with Vision Task Alignment [58.94611347128066]
タスク選好最適化(TPO)は、典型的なきめ細かい視覚的タスクから派生した微分可能なタスク選好を利用する新しい手法である。
トレーニング中にリッチなビジュアルラベルを活用することで、TPOはMLLMのマルチモーダル能力とタスク固有のパフォーマンスを大幅に向上させる。
VideoChatとLLaVAによるこのアプローチのインスタンス化は、ベースラインモデルと比較して、総合的に14.6%のマルチモーダル性能の向上を示している。
論文 参考訳(メタデータ) (2024-12-26T18:56:05Z) - Instruction-Guided Fusion of Multi-Layer Visual Features in Large Vision-Language Models [50.98559225639266]
6つのタスクカテゴリにまたがる18のベンチマークを用いて,異なるエンコーダ層からの視覚的特徴の寄与について検討した。
この結果から,多層構造はタスク依存性の相補的な長所を提供し,均一な融合が最適以下の性能をもたらすことが明らかとなった。
テキスト命令に基づいて動的に多層視覚特徴を統合する命令誘導型視覚アグリゲータを提案する。
論文 参考訳(メタデータ) (2024-12-26T05:41:31Z) - Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs [61.143381152739046]
視覚中心のアプローチで設計したマルチモーダルLLM(MLLM)のファミリーであるCambrian-1を紹介する。
本研究は,様々な視覚表現を評価するためのインタフェースとして,LLMとビジュアルインストラクションチューニングを用いた。
モデルウェイト、コード、サポートツール、データセット、詳細なインストラクションチューニングと評価のレシピを提供しています。
論文 参考訳(メタデータ) (2024-06-24T17:59:42Z) - InsightSee: Advancing Multi-agent Vision-Language Models for Enhanced Visual Understanding [12.082379948480257]
本稿では,複雑な視覚理解シナリオを扱う上で,視覚言語モデルの能力を高めるためのマルチエージェントフレームワークであるInsightSeeを提案する。
このフレームワークは、視覚情報解釈のプロセスを洗練するために統合される記述エージェントと、2つの推論エージェントと決定エージェントとを含む。
このフレームワークは、9つのベンチマークテストのうち6つで最先端のアルゴリズムよりも優れており、マルチモーダル理解が大幅に進歩している。
論文 参考訳(メタデータ) (2024-05-31T13:56:55Z) - Enhancing Visual Document Understanding with Contrastive Learning in
Large Visual-Language Models [56.76307866160105]
文書オブジェクト協調学習(Document Object Contrastive Learning, DoCo)と呼ばれる対照的な学習フレームワークを提案する。
DoCoは補助的なマルチモーダルエンコーダを利用して文書オブジェクトの特徴を取得し、それをLVLM(Large Visual-Language Models)の視覚エンコーダによって生成された視覚的特徴に合わせる。
提案するDoCoは,様々なLVLMの事前学習において,推論過程における計算複雑性の増大を招くことなく,プラグイン・アンド・プレイの事前学習手法として機能することが実証された。
論文 参考訳(メタデータ) (2024-02-29T10:17:27Z) - Question Aware Vision Transformer for Multimodal Reasoning [14.188369270753347]
マルチモーダル推論のための質問認識型視覚変換器QA-ViTを提案する。
視覚エンコーダに直接質問認識を埋め込む。
この統合により、仮定された問題に関連性のある画像の側面に焦点を当てた動的視覚的特徴が得られる。
論文 参考訳(メタデータ) (2024-02-08T08:03:39Z) - A Continual Learning Paradigm for Non-differentiable Visual Programming
Frameworks on Visual Reasoning Tasks [51.053901491986025]
様々な視覚的推論タスクにまたがって,VisProgの継続的学習パラダイムを提案する。
我々のCLVPは、よく訓練されたタスク固有モデルの視覚的サブモジュールに、段階的に、そして、アンチフォッゲッティングな方法で蒸留する。
論文 参考訳(メタデータ) (2023-09-18T14:28:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。