論文の概要: SEUF: Is Unlearning One Expert Enough for Mixture-of-Experts LLMs?
- arxiv url: http://arxiv.org/abs/2411.18797v2
- Date: Mon, 30 Jun 2025 17:45:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-01 15:08:38.73959
- Title: SEUF: Is Unlearning One Expert Enough for Mixture-of-Experts LLMs?
- Title(参考訳): SEUF: ある専門家の学習は、LLMの混合に十分か?
- Authors: Haomin Zhuang, Yihua Zhang, Kehan Guo, Jinghan Jia, Gaowen Liu, Sijia Liu, Xiangliang Zhang,
- Abstract要約: 我々は,Mixture-of-Experts (MoE) LLMのためのSEUF(Selected-Expert Unlearning Framework)を提案する。
専門家の帰属を通じて、未学習は特定の知識に対する最も活発な専門家に集中する。
SEUFは様々な標準のアンラーニングアルゴリズムと互換性がある。
- 参考スコア(独自算出の注目度): 35.237427998489785
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in LLMs unlearning have shown remarkable success in removing unwanted data-model influences while preserving the model's utility for legitimate knowledge. Despite these strides, sparse Mixture-of-Experts (MoE) LLMs--a key subset of the LLM family--have remained unexplored in the context of unlearning. As MoE LLMs are celebrated for their exceptional performance, we ask:How can unlearning be performed effectively and efficiently on MoE LLMs? Our pilot study shows that the dynamic routing nature of MoE LLMs introduces unique challenges, leading to excessive forgetting, uncontrolled knowledge erasure and substantial utility drops when existing unlearning methods are applied. To address this, we propose a novel Selected-Expert Unlearning Framework (SEUF). Through expert attribution, unlearning is concentrated on the most actively engaged experts for the specified knowledge. Concurrently, an anchor loss is applied to the router to stabilize the active state of this targeted expert, ensuring focused and controlled unlearning. SEUF is compatible with various standard unlearning algorithms. Extensive experiments demonstrate that SEUF enhances both forget quality up to 5% and model utility by 35% on MoE LLMs across various benchmarks and LLM architectures (compared to standard unlearning algorithms), while only unlearning 0.06% of the model parameters.
- Abstract(参考訳): LLMの最近の進歩は、正当な知識のためにモデルの有用性を保ちながら、望ましくないデータモデルの影響を取り除くことに顕著な成功を収めている。
これらの進歩にもかかわらず、LLMファミリーの重要なサブセットであるSparse Mixture-of-Experts (MoE) LLMは、アンラーニングの文脈では未解明のままであった。
MoE LLMは例外的なパフォーマンスで祝われているので、我々は疑問に思う:MoE LLM上で、学習を効果的に効率的に行うことができるのか?
我々のパイロット研究は、MoE LLMの動的ルーティング特性がユニークな課題をもたらし、既存の未学習手法を適用した場合、過度に忘れられ、制御不能な知識の消去、実質的なユーティリティの低下につながることを示している。
そこで我々は,SEUF(Selected-Expert Unlearning Framework)を提案する。
専門家の帰属を通じて、未学習は特定の知識に対する最も活発な専門家に集中する。
同時に、ルータにアンカーロスを適用して、この目標とするエキスパートのアクティブな状態を安定化し、集中的かつ制御されたアンラーニングを確保する。
SEUFは様々な標準のアンラーニングアルゴリズムと互換性がある。
大規模な実験では、SEUFは、モデルパラメータの0.06%しか学習せず、様々なベンチマークやLLMアーキテクチャ(標準のアンラーニングアルゴリズムと比較して)のMoE LLMで、品質を最大5%、モデルユーティリティを35%向上させる。
関連論文リスト
- Iterative Self-Incentivization Empowers Large Language Models as Agentic Searchers [74.17516978246152]
大規模言語モデル(LLM)は、従来の手法を進化させるために情報検索に広く統合されている。
エージェント検索フレームワークであるEXSEARCHを提案する。
4つの知識集約ベンチマークの実験では、EXSEARCHはベースラインを大幅に上回っている。
論文 参考訳(メタデータ) (2025-05-26T15:27:55Z) - UIPE: Enhancing LLM Unlearning by Removing Knowledge Related to Forgetting Targets [41.0340052199534]
大規模言語モデル(LLM)は、大規模なデータセットのトレーニング中に必然的に有害な情報を取得する。
既存のアンラーニング手法は、非ラーニングの有効性に論理的関連知識が与える決定的な影響を克服しつつ、対象データを忘れることに重点を置いている。
本研究では,忘れる対象と高い相関性を持つ知識を除去するUIPE(Unlearning Improvement via Extrapolation)を提案する。
論文 参考訳(メタデータ) (2025-03-06T18:40:00Z) - CL-MoE: Enhancing Multimodal Large Language Model with Dual Momentum Mixture-of-Experts for Continual Visual Question Answering [27.812611421754482]
連続視覚質問応答 (VQA) のためのMLLMs-based dual momentum Mixture-of-Experts (CL-MoE) フレームワークを提案する。
MLLMと連続学習を統合し,LLMの豊富なコモンセンス知識を活用する。
提案手法は,10VQAタスクにおける最先端性能を実現し,提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2025-03-01T09:25:23Z) - Agents Are All You Need for LLM Unlearning [9.934258340998047]
textttALUは、LLMアンラーニングに対するマルチエージェント、リトレインフリー、モデルに依存しないアプローチである。
textttALUは、最も堅牢な推論時LLMアンラーニングフレームワークとして一貫して注目されている。
textttALUは最大1000の未学習目標に基づいて評価され、これまで提案された全てのLLM未学習手法の評価範囲を超えている。
論文 参考訳(メタデータ) (2025-02-01T11:45:44Z) - Does Unlearning Truly Unlearn? A Black Box Evaluation of LLM Unlearning Methods [1.9799527196428242]
大規模言語モデルアンラーニングは、LLMが悪意ある目的のために使用するのを防ぐために学んだ有害な情報を除去することを目的としている。
アンラーニングが一般的なモデル能力に顕著な影響を与えていることを示す。
簡単な方法で5ショットのプロンプトやリフレーズを行うことで、未学習ベンチマークの精度が10倍以上に向上する可能性があることを示す。
論文 参考訳(メタデータ) (2024-11-18T22:31:17Z) - Exploring Knowledge Boundaries in Large Language Models for Retrieval Judgment [56.87031484108484]
大規模言語モデル(LLM)は、その実践的応用でますます認識されている。
Retrieval-Augmented Generation (RAG)はこの課題に取り組み、LLMに大きな影響を与えている。
中立あるいは有害な結果をもたらす検索要求を最小化することにより、時間と計算コストの両方を効果的に削減できる。
論文 参考訳(メタデータ) (2024-11-09T15:12:28Z) - WAGLE: Strategic Weight Attribution for Effective and Modular Unlearning in Large Language Models [26.07431044262102]
本稿では,大規模言語モデル(LLM)におけるモデルウェイトと未学習プロセスの相互作用について考察する。
重みの「影響」と「影響」とを相互に関連付けることによって,重みの「影響」を記憶・保持するLLMアンラーニング手法であるWAGLEを設計する。
論文 参考訳(メタデータ) (2024-10-23T02:22:07Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
本稿では,高度に訓練された高密度FFNを余分なサブネットワークに分解する新しいアプローチであるFacterLLMを紹介する。
FactorLLMは、最大85%のモデル性能を確保しながら、推論速度を30%以上増加させながら、ソースモデルに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-08-15T16:45:16Z) - MoExtend: Tuning New Experts for Modality and Task Extension [61.29100693866109]
MoExtendは、Mixture-of-Experts (MoE)モデルのモダリティ適応と拡張を効率化する効果的なフレームワークである。
MoExtendは、新しいエキスパートをトレーニング済みのMoEモデルにシームレスに統合し、トレーニング済みのモデルをチューニングすることなく、新しい知識を提供する。
論文 参考訳(メタデータ) (2024-08-07T02:28:37Z) - Practical Unlearning for Large Language Models [23.515444452866404]
機械学習(MU)は、これらの問題に対処するための有望なソリューションとして登場した。
MUは通常、実用性を維持するために元のトレーニングデータへの完全なアクセスを前提とします。
既存のLLMアンラーニング手法は、望ましくないデータアンラーニングに最も影響を受けるデータへのアクセスを前提としていることが多い。
我々は,これらの課題を克服し,実践的なLLMアンラーニングを実現するためのO3フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-14T14:26:17Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
大規模言語モデル(LLM)は、様々なタスクにおいて顕著な能力を示しており、最近、IoT(Internet of Things)アプリケーションにLLMの能力を統合することが研究の注目を集めている。
セキュリティ上の懸念から、多くの機関は最先端の商用LLMサービスへのアクセスを避け、ローカルネットワーク環境でのオープンソースLLMのデプロイと利用を必要としている。
本研究では,LLMを用いた生成IoT(Generative IoT)システムを提案する。
論文 参考訳(メタデータ) (2024-06-14T19:24:00Z) - Towards Effective Evaluations and Comparisons for LLM Unlearning Methods [97.2995389188179]
本稿では,大規模言語モデルにおける機械学習評価の精度向上を図る。
評価指標の堅牢性と、競合する目標間のトレードオフという、2つの重要な課題に対処します。
論文 参考訳(メタデータ) (2024-06-13T14:41:00Z) - Offset Unlearning for Large Language Models [49.851093293780615]
delta-Unlearningは、ブラックボックスLLMのためのオフセットのアンラーニングフレームワークである。
デルタアンラーニングは、一般的な対物スコープタスクにおいて、類似またはより強い性能を維持しながら、効果的にターゲットデータを解放できることを示す。
論文 参考訳(メタデータ) (2024-04-17T03:39:51Z) - Small Models, Big Insights: Leveraging Slim Proxy Models To Decide When and What to Retrieve for LLMs [60.40396361115776]
本稿では,スリムプロキシモデルを用いた大規模言語モデル (LLM) における知識不足を検知する新しい協調手法であるSlimPLMを提案する。
パラメータがはるかに少ないプロキシモデルを採用し、回答を回答としています。
ヒューリスティックな回答は、LLM内の既知の未知の知識と同様に、ユーザの質問に答えるために必要な知識を予測するのに使用される。
論文 参考訳(メタデータ) (2024-02-19T11:11:08Z) - Rethinking Machine Unlearning for Large Language Models [85.92660644100582]
大規模言語モデル(LLM)の領域における機械学習の研究
このイニシアチブは、望ましくないデータの影響(機密情報や違法情報など)と関連するモデル機能を排除することを目的としている。
論文 参考訳(メタデータ) (2024-02-13T20:51:58Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
本稿では,大規模言語モデル(LLM)における知識融合の概念を紹介する。
我々は、それらの集合的知識と独特な強みを外部化し、それによってターゲットモデルの能力が、どのソースLLMよりも高められるようにします。
この結果から,LLMの融合により,推論やコモンセンス,コード生成など,対象モデルの性能が向上することが確認された。
論文 参考訳(メタデータ) (2024-01-19T05:02:46Z) - FreeAL: Towards Human-Free Active Learning in the Era of Large Language
Models [21.88032973150393]
大規模言語モデル(LLM)からのタスク固有知識の対話的蒸留とフィルタリング
8つのベンチマークデータセットの実験では、FreeALは人間の監督なしに、SLMとLLMのゼロショット性能を大幅に向上することを示した。
論文 参考訳(メタデータ) (2023-11-27T08:23:08Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
調整された大規模言語モデル(LLM)は、タスク解決、指示に従うこと、安全性を確保することにおいて、例外的な能力を示す。
既存の連続学習ベンチマークでは、LLMをリードする上で十分な課題が欠如している。
LLMにおける継続学習を評価するための新しいベンチマークであるTRACEを紹介する。
論文 参考訳(メタデータ) (2023-10-10T16:38:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。