Spatiotemporal Density Correction of Multivariate Global Climate Model Projections using Deep Learning
- URL: http://arxiv.org/abs/2411.18799v2
- Date: Sat, 07 Dec 2024 02:23:07 GMT
- Title: Spatiotemporal Density Correction of Multivariate Global Climate Model Projections using Deep Learning
- Authors: Reetam Majumder, Shiqi Fang, A. Sankarasubramanian, Emily C. Hector, Brian J. Reich,
- Abstract summary: Global Climate Models (GCMs) are numerical models that simulate complex physical processes within the Earth's climate system.
GCMs suffer from systemic biases due to simplifications made to the underlying physical processes.
We propose a new semi-parametric conditional density estimation (SPCDE) for density correction of the joint distribution of daily precipitation and maximum temperature data.
- Score: 1.0801976288811024
- License:
- Abstract: Global Climate Models (GCMs) are numerical models that simulate complex physical processes within the Earth's climate system and are essential for understanding and predicting climate change. However, GCMs suffer from systemic biases due to simplifications made to the underlying physical processes. GCM output therefore needs to be bias corrected before it can be used for future climate projections. Most common bias correction methods, however, cannot preserve spatial, temporal, or inter-variable dependencies. We propose a new semi-parametric conditional density estimation (SPCDE) for density correction of the joint distribution of daily precipitation and maximum temperature data obtained from gridded GCM spatial fields. The Vecchia approximation is employed to preserve dependencies in the observed field during the density correction process, which is carried out using semi-parametric quantile regression. The ability to calibrate joint distributions of GCM projections has potential advantages not only in estimating extremes, but also in better estimating compound hazards, like heat waves and drought, under potential climate change. Illustration on historical data from 1951-2014 over two 5x5 spatial grids in the US indicate that SPCDE can preserve key marginal and joint distribution properties of precipitation and maximum temperature, and predictions obtained using SPCDE are better calibrated compared to predictions using asynchronous quantile mapping and canonical correlation analysis, two commonly used bias correction approaches.
Related papers
- Statistical Downscaling via High-Dimensional Distribution Matching with Generative Models [12.737495484442443]
We introduce Generative Bias Correction and Super-Resolution (GenBCSR), a two-stage probabilistic framework for statistical downscaling.
By framing the downscaling problem as distribution matching, GenBCSR relaxes the constraints of supervised learning.
We show that GenBCSR surpasses standard approaches in predictive accuracy of critical impact variables.
arXiv Detail & Related papers (2024-12-11T03:52:17Z) - A Deconfounding Approach to Climate Model Bias Correction [26.68810227550602]
Global Climate Models (GCMs) are crucial for predicting future climate changes by simulating the Earth systems.
GCMs exhibit systematic biases due to model uncertainties, parameterization simplifications, and inadequate representation of complex climate phenomena.
This paper proposes a novel bias correction approach to utilize both GCM and observational data to learn a factor model that captures multi-cause latent confounders.
arXiv Detail & Related papers (2024-08-22T01:53:35Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Machine-learned climate model corrections from a global storm-resolving
model [0.0]
We train neural networks to learn the state-dependent temperature, humidity, and radiative flux corrections needed to nudge a 200 km climate model to the evolution of a 3km fine-grid storm-resolving model (GSRM)
When these corrective ML models are coupled to a year-long coarse-grid climate simulation, the time-mean spatial pattern errors are reduced by 6-25% for land surface temperature and 9-25% for land surface precipitation.
arXiv Detail & Related papers (2022-11-21T19:39:05Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
Climate change exacerbates the long-term soil management problem of groundwater contamination.
We develop a physics-informed machine learning surrogate model using U-Net enhanced Fourier Neural Contaminated (PDENO)
In parallel, we develop a convolutional autoencoder combined with climate data to reduce the dimensionality of climatic region similarities across the United States.
arXiv Detail & Related papers (2022-11-20T06:46:35Z) - Spatiotemporal modeling of European paleoclimate using doubly sparse
Gaussian processes [61.31361524229248]
We build on recent scale sparsetemporal GPs to reduce the computational burden.
We successfully employ such a doubly sparse GP to construct a probabilistic model of paleoclimate.
arXiv Detail & Related papers (2022-11-15T14:15:04Z) - Multi-model Ensemble Analysis with Neural Network Gaussian Processes [5.975698284186638]
Multi-model ensemble analysis integrates information from multiple climate models into a unified projection.
We propose a statistical approach, called NN-GPR, using a deep neural network based covariance function.
Experiments show that NN-GPR can be highly skillful at surface temperature and precipitation forecasting.
arXiv Detail & Related papers (2022-02-08T21:28:03Z) - Parameterized Temperature Scaling for Boosting the Expressive Power in
Post-Hoc Uncertainty Calibration [57.568461777747515]
We introduce a novel calibration method, Parametrized Temperature Scaling (PTS)
We demonstrate that the performance of accuracy-preserving state-of-the-art post-hoc calibrators is limited by their intrinsic expressive power.
We show with extensive experiments that our novel accuracy-preserving approach consistently outperforms existing algorithms across a large number of model architectures, datasets and metrics.
arXiv Detail & Related papers (2021-02-24T10:18:30Z) - DeepClimGAN: A High-Resolution Climate Data Generator [60.59639064716545]
Earth system models (ESMs) are often used to generate future projections of climate change scenarios.
As a compromise, emulators are substantially less expensive but may not have all of the complexity of an ESM.
Here we demonstrate the use of a conditional generative adversarial network (GAN) to act as an ESM emulator.
arXiv Detail & Related papers (2020-11-23T20:13:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.