Deformed algebraic structure of angular momenta: GUP perspective
- URL: http://arxiv.org/abs/2411.18901v1
- Date: Thu, 28 Nov 2024 04:25:11 GMT
- Title: Deformed algebraic structure of angular momenta: GUP perspective
- Authors: Gaurav Bhandari, S. D. Pathak, Manabendra Sharma, Anzhong Wang,
- Abstract summary: We investigate the origins of the Generalized Uncertainty Principle (GUP) and examine higher-order models.
We extend the concept of minimal length to minimal angular resolution, which plays a crucial role in modifying angular momentum and its associated algebra.
- Score: 0.0
- License:
- Abstract: The prediction of a minimal length scale by various quantum gravity candidates (such as string/M theory, Doubly Special Relativity, Loop Quantum Gravity and others) have suggested modification of Heisenberg Uncertainty Principle (HUP), resulting in the Generalized Uncertainty Principle (GUP). In this short review, we investigate the origins of the GUP and examine higher-order models, focusing on the linear plus quadratic form of the GUP. We extend the concept of minimal length to minimal angular resolution, which plays a crucial role in modifying angular momentum and its associated algebra. A comparison is made between the standard angular momentum commutator algebra and that modified by the GUP. Finally, we review its application in the hydrogen atom spectra and and discuss future endeavors.
Related papers
- Generalized Uncertainty Principle mimicking dynamical Dark Energy: matter perturbations and gravitational wave data analysis [0.0]
Generalized Uncertainty Principle (GUP) stands out as a nearly ubiquitous feature in quantum gravity modeling.
We discuss implications for the relic density of Primordial Gravitational Waves (PGWs)
Using the sensitivity of the next-generation GW observatories in the frequency range below $103,mathrmHz$, we constrain $betalesssim1039$, which is more stringent than most other cosmological/astrophysical limits.
arXiv Detail & Related papers (2025-02-14T09:44:44Z) - Relaxation of first-class constraints and the quantization of gauge theories: from "matter without matter" to the reappearance of time in quantum gravity [72.27323884094953]
We make a conceptual overview of an approach to the initial-value problem in canonical gauge theories.
We stress how the first-class phase-space constraints may be relaxed if we interpret them as fixing the values of new degrees of freedom.
arXiv Detail & Related papers (2024-02-19T19:00:02Z) - A Floquet-Rydberg quantum simulator for confinement in $\mathbb{Z}_2$
gauge theories [44.99833362998488]
Recent advances in the field of quantum technologies have opened up the road for the realization of small-scale quantum simulators.
We present a scalable Floquet scheme for the quantum simulation of the real-time dynamics in a $mathbbZ$ LGT.
We show that an observation of gauge-invariant confinement dynamics in the Floquet-Rydberg setup is at reach of current experimental techniques.
arXiv Detail & Related papers (2023-11-28T13:01:24Z) - A path integral formula of quantum gravity emergent from entangled local structures [0.0]
We show that a theory of emergent gravity arises, and that this can be recast according to the Ashtekar's formulation of general relativity.
As a consequence of the quantization procedure, the Hamiltonian is recovered to be non-Hermitian, and can be related to the complex action formalism.
arXiv Detail & Related papers (2023-04-21T10:23:35Z) - General quantum algorithms for Hamiltonian simulation with applications
to a non-Abelian lattice gauge theory [44.99833362998488]
We introduce quantum algorithms that can efficiently simulate certain classes of interactions consisting of correlated changes in multiple quantum numbers.
The lattice gauge theory studied is the SU(2) gauge theory in 1+1 dimensions coupled to one flavor of staggered fermions.
The algorithms are shown to be applicable to higher-dimensional theories as well as to other Abelian and non-Abelian gauge theories.
arXiv Detail & Related papers (2022-12-28T18:56:25Z) - Decoherence limit of quantum systems obeying generalized uncertainty
principle: new paradigm for Tsallis thermostatistics [0.0]
We study possible observational effects of generalized uncertainty principle (GUP) systems in their decoherence domain.
We invoke the Maximal Entropy principle known from estimation theory to reveal connection between the quasi-classical (decoherence) limit of GUP-related quantum theory and non-extensive thermostatistics of Tsallis.
arXiv Detail & Related papers (2022-01-19T23:37:05Z) - Maximal momentum GUP leads to quadratic gravity [0.0]
Quantum theories of gravity predict features such as a minimum measurable length and maximum momentum.
We use the Generalized Uncertainty Principle (GUP), which is an extension of the standard Heisenberg Uncertainty Principle motivated by Quantum Gravity.
In particular, we use a GUP with modelling maximum momentum to establish a correspondence between the GUP-modified dynamics of a massless spin-2 field and quadratic (referred to as Stelle) gravity.
arXiv Detail & Related papers (2021-06-08T06:57:17Z) - Topological Quantum Gravity of the Ricci Flow [62.997667081978825]
We present a family of topological quantum gravity theories associated with the geometric theory of the Ricci flow.
First, we use BRST quantization to construct a "primitive" topological Lifshitz-type theory for only the spatial metric.
We extend the primitive theory by gauging foliation-preserving spacetime symmetries.
arXiv Detail & Related papers (2020-10-29T06:15:30Z) - Generalized uncertainty principle with maximal observable momentum and
no minimal length indeterminacy [0.0]
We present a novel generalization of the Heisenberg uncertainty principle.
The result is an exact generalized uncertainty principle valid at all energy scales.
We study the implications of this new model on some quantum mechanical applications and on the black hole thermodynamics.
arXiv Detail & Related papers (2020-10-12T17:46:39Z) - Quantum-optimal-control-inspired ansatz for variational quantum
algorithms [105.54048699217668]
A central component of variational quantum algorithms (VQA) is the state-preparation circuit, also known as ansatz or variational form.
Here, we show that this approach is not always advantageous by introducing ans"atze that incorporate symmetry-breaking unitaries.
This work constitutes a first step towards the development of a more general class of symmetry-breaking ans"atze with applications to physics and chemistry problems.
arXiv Detail & Related papers (2020-08-03T18:00:05Z) - Quantum probes for universal gravity corrections [62.997667081978825]
We review the concept of minimum length and show how it induces a perturbative term appearing in the Hamiltonian of any quantum system.
We evaluate the Quantum Fisher Information in order to find the ultimate bounds to the precision of any estimation procedure.
Our results show that quantum probes are convenient resources, providing potential enhancement in precision.
arXiv Detail & Related papers (2020-02-13T19:35:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.