MATATA: A weakly-supervised MAthematical Tool-Assisted reasoning for Tabular Applications
- URL: http://arxiv.org/abs/2411.18915v3
- Date: Tue, 10 Dec 2024 19:18:10 GMT
- Title: MATATA: A weakly-supervised MAthematical Tool-Assisted reasoning for Tabular Applications
- Authors: Vishnou Vinayagame, Gregory Senay, Luis MartÃ,
- Abstract summary: MATATA is a cost-effective method to train LLM agents for data problems through reasoning, planning, and tool use.
It empowers 3.8B/8B Small Language Models (SLMs), particularly suited for local hosting and sensitive business contexts.
Experiments show that MATATA reaches state-of-the-art performances on FinQA and TAT-QA among reasoning frameworks based on open-source models.
- Score: 0.9831489366502302
- License:
- Abstract: Mathematical reasoning capabilities are increasing with tool-augmented language agents, but methods often rely either on closed-source or large models, external data, or extensive prompt engineering. This work introduces MATATA, a novel cost-effective method to train LLM agents for tabular data problems through reasoning, planning, and tool use. With a progressive self-improvement paradigm and an iterative weak supervision, it empowers 3.8B/8B Small Language Models (SLMs), particularly suited for local hosting and sensitive business contexts where data privacy is crucial. By employing a flexible and reusable tools across different datasets, it achieves robust performance with effective scalability across shared tasks. Experiments show that MATATA reaches state-of-the-art performances on FinQA and TAT-QA among reasoning frameworks based on open-source models. Moreover, MATATA models compete with GPT-4 based frameworks on TabMWP, while being SLMs.
Related papers
- Efficient Multi-Agent Collaboration with Tool Use for Online Planning in Complex Table Question Answering [16.790216473975146]
Complex table question answering (TQA) aims to answer questions that require complex reasoning, such as multi-step or multi-category reasoning.
Previous approaches demonstrated notable performance by leveraging either closed-source large language models (LLMs) or fine-tuned open-weight LLMs.
We propose Multi-Agent Collaboration with Tool use (MACT), a framework that requires neither closed-source models nor fine-tuning.
arXiv Detail & Related papers (2024-12-28T13:13:33Z) - Benchmarking Large Language Models for Math Reasoning Tasks [12.91916443702145]
We compare seven state-of-the-art in-context learning algorithms for mathematical problem solving across five widely used mathematical datasets on four powerful foundation models.
Our results indicate that larger foundation models like GPT-4o and LLaMA 3-70B can solve mathematical reasoning independently from the concrete prompting strategy.
We open-source our benchmark code to support the integration of additional models in future research.
arXiv Detail & Related papers (2024-08-20T13:34:17Z) - Learning to Plan for Retrieval-Augmented Large Language Models from Knowledge Graphs [59.76268575344119]
We introduce a novel framework for enhancing large language models' (LLMs) planning capabilities by using planning data derived from knowledge graphs (KGs)
LLMs fine-tuned with KG data have improved planning capabilities, better equipping them to handle complex QA tasks that involve retrieval.
arXiv Detail & Related papers (2024-06-20T13:07:38Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
Long-context language models (LCLMs) have the potential to revolutionize our approach to tasks traditionally reliant on external tools like retrieval systems or databases.
We introduce LOFT, a benchmark of real-world tasks requiring context up to millions of tokens designed to evaluate LCLMs' performance on in-context retrieval and reasoning.
Our findings reveal LCLMs' surprising ability to rival state-of-the-art retrieval and RAG systems, despite never having been explicitly trained for these tasks.
arXiv Detail & Related papers (2024-06-19T00:28:58Z) - Towards Completeness-Oriented Tool Retrieval for Large Language Models [60.733557487886635]
Real-world systems often incorporate a wide array of tools, making it impractical to input all tools into Large Language Models.
Existing tool retrieval methods primarily focus on semantic matching between user queries and tool descriptions.
We propose a novel modelagnostic COllaborative Learning-based Tool Retrieval approach, COLT, which captures not only the semantic similarities between user queries and tool descriptions but also takes into account the collaborative information of tools.
arXiv Detail & Related papers (2024-05-25T06:41:23Z) - Large Language Models Can Automatically Engineer Features for Few-Shot Tabular Learning [35.03338699349037]
We propose a novel in-context learning framework, FeatLLM, which employs Large Language Models as feature engineers.
FeatLLM generates high-quality rules, significantly (10% on average) outperforming alternatives such as TabLLM and STUNT.
arXiv Detail & Related papers (2024-04-15T06:26:08Z) - Enhancing the General Agent Capabilities of Low-Parameter LLMs through Tuning and Multi-Branch Reasoning [56.82041895921434]
Open-source pre-trained Large Language Models (LLMs) exhibit strong language understanding and generation capabilities.
When used as agents for dealing with complex problems in the real world, their performance is far inferior to large commercial models such as ChatGPT and GPT-4.
arXiv Detail & Related papers (2024-03-29T03:48:12Z) - Look Before You Leap: Towards Decision-Aware and Generalizable Tool-Usage for Large Language Models [26.28459880766842]
We propose a decision-aware and generalizable tool-usage framework (DEER)
Specifically, we first construct the tool-usage samples with multiple decision branches via an automatic generation pipeline.
Our proposed DEER is effective and significantly outperforms baselines across various datasets.
arXiv Detail & Related papers (2024-02-26T16:11:03Z) - Equipping Language Models with Tool Use Capability for Tabular Data
Analysis in Finance [10.859392781606623]
Large language models (LLMs) have exhibited an array of reasoning capabilities but face challenges like error propagation and hallucination.
We explore the potential of language model augmentation with external tools to mitigate these limitations.
We apply supervised fine-tuning on a LLaMA-2 13B Chat model to act both as a 'task router' and 'task solver'
arXiv Detail & Related papers (2024-01-27T07:08:37Z) - TAP4LLM: Table Provider on Sampling, Augmenting, and Packing Semi-structured Data for Large Language Model Reasoning [55.33939289989238]
We propose TAP4LLM as a versatile pre-processor suite for leveraging large language models (LLMs) in table-based tasks effectively.
It covers several distinct components: (1) table sampling to decompose large tables into manageable sub-tables based on query semantics, (2) table augmentation to enhance tables with additional knowledge from external sources or models, and (3) table packing & serialization to convert tables into various formats suitable for LLMs' understanding.
arXiv Detail & Related papers (2023-12-14T15:37:04Z) - CREATOR: Tool Creation for Disentangling Abstract and Concrete Reasoning of Large Language Models [74.22729793816451]
Large Language Models (LLMs) have made significant progress in utilizing tools, but their ability is limited by API availability.
We propose CREATOR, a novel framework that enables LLMs to create their own tools using documentation and code realization.
We evaluate CREATOR on MATH and TabMWP benchmarks, respectively consisting of challenging math competition problems.
arXiv Detail & Related papers (2023-05-23T17:51:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.