論文の概要: NeuroLifting: Neural Inference on Markov Random Fields at Scale
- arxiv url: http://arxiv.org/abs/2411.18954v1
- Date: Thu, 28 Nov 2024 06:50:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:22:08.598545
- Title: NeuroLifting: Neural Inference on Markov Random Fields at Scale
- Title(参考訳): NeuroLifting:Markovランダムフィールドのニューラルネットワーク
- Authors: Yaomin Wang, Chaolong Ying, Xiaodong Luo, Tianshu Yu,
- Abstract要約: 大規模なマルコフランダムフィールド(MRFs)での推論は、批判的だが難しい課題である。
本稿では,グラフニューラルネットワーク(GNN)を利用した新しい手法であるNeuroLiftingを紹介する。
従来のリフト技術を非パラメトリックニューラルネットワークフレームワークに拡張することで、NeuroLiftingはニューラルネットワークのスムーズなロスランドスケープから恩恵を受けることができる。
- 参考スコア(独自算出の注目度): 14.042164101688682
- License:
- Abstract: Inference in large-scale Markov Random Fields (MRFs) is a critical yet challenging task, traditionally approached through approximate methods like belief propagation and mean field, or exact methods such as the Toulbar2 solver. These strategies often fail to strike an optimal balance between efficiency and solution quality, particularly as the problem scale increases. This paper introduces NeuroLifting, a novel technique that leverages Graph Neural Networks (GNNs) to reparameterize decision variables in MRFs, facilitating the use of standard gradient descent optimization. By extending traditional lifting techniques into a non-parametric neural network framework, NeuroLifting benefits from the smooth loss landscape of neural networks, enabling efficient and parallelizable optimization. Empirical results demonstrate that, on moderate scales, NeuroLifting performs very close to the exact solver Toulbar2 in terms of solution quality, significantly surpassing existing approximate methods. Notably, on large-scale MRFs, NeuroLifting delivers superior solution quality against all baselines, as well as exhibiting linear computational complexity growth. This work presents a significant advancement in MRF inference, offering a scalable and effective solution for large-scale problems.
- Abstract(参考訳): 大規模マルコフランダム場(MRFs)における推論は、伝統的に信念の伝播や平均場といった近似的な方法や、トゥールバー2解法のような正確な方法によってアプローチされる、批判的かつ困難な課題である。
これらの戦略は、特に問題スケールが大きくなるにつれて、効率性とソリューション品質の最適なバランスをとらないことが多い。
本稿では、グラフニューラルネットワーク(GNN)を利用して、MRFにおける決定変数を再パラメータ化し、標準勾配勾配の最適化を容易にする新しい手法であるNeuroLiftingを紹介する。
従来のリフト技術を非パラメトリックニューラルネットワークフレームワークに拡張することで、NeuroLiftingはニューラルネットワークのスムーズなロスランドスケープから恩恵を受け、効率的で並列化可能な最適化を実現する。
実験結果から,NeuroLifting は解法品質の点で正確な解法であるToulbar2 に非常に近い性能を示し,既存の近似法をはるかに上回っている。
特に、大規模MRFでは、NeuroLiftingは全てのベースラインに対して優れたソリューション品質を提供し、線形計算複雑性の増大を示す。
この研究は、大規模問題に対してスケーラブルで効果的なソリューションを提供する、MDF推論の大幅な進歩を示す。
関連論文リスト
- Improving Generalization of Deep Neural Networks by Optimum Shifting [33.092571599896814]
本稿では,ニューラルネットワークのパラメータを最小値からフラット値に変化させる,近位シフトと呼ばれる新しい手法を提案する。
本手法は,ニューラルネットワークの入力と出力が固定された場合,ネットワーク内の行列乗算を,未決定線形方程式系として扱うことができることを示す。
論文 参考訳(メタデータ) (2024-05-23T02:31:55Z) - Optimization Over Trained Neural Networks: Taking a Relaxing Walk [4.517039147450688]
ニューラルネットワークモデルの大域的および局所的線形緩和を探索し,よりスケーラブルな解法を提案する。
我々の解法は最先端のMILP解法と競合し、それ以前には入力、深さ、ニューロン数の増加によるより良い解法を導出する。
論文 参考訳(メタデータ) (2024-01-07T11:15:00Z) - Efficient and Flexible Neural Network Training through Layer-wise Feedback Propagation [49.44309457870649]
ニューラルネットワークのような予測器のための新しいトレーニング原理であるLFP(Layer-wise Feedback Propagation)を提案する。
LFPは、与えられたタスクの解決へのそれぞれの貢献に基づいて、個々のニューロンに報酬を分解する。
提案手法は,ネットワークの有用な部分を補強し,有害な部分を弱めるという欲求的アプローチを実現する。
論文 参考訳(メタデータ) (2023-08-23T10:48:28Z) - MISNN: Multiple Imputation via Semi-parametric Neural Networks [9.594714330925703]
バイオメディカル・ソーシャル・エコノメトリー研究において、多重計算(Multiple Imputation, MI)は、欠落した価値問題に広く応用されている。
提案するMISNNは,MIの特徴選択を取り入れた,新規で効率的なアルゴリズムである。
論文 参考訳(メタデータ) (2023-05-02T21:45:36Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Learning k-Level Structured Sparse Neural Networks Using Group Envelope Regularization [4.0554893636822]
制約のあるリソースに大規模ディープニューラルネットワークをデプロイするための新しいアプローチを導入する。
この手法は推論時間を短縮し、メモリ需要と消費電力を減らすことを目的とする。
論文 参考訳(メタデータ) (2022-12-25T15:40:05Z) - Non-Gradient Manifold Neural Network [79.44066256794187]
ディープニューラルネットワーク(DNN)は通常、勾配降下による最適化に数千のイテレーションを要します。
非次最適化に基づく新しい多様体ニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-06-15T06:39:13Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
本稿では,ニューラル平均場(NMF)ダイナミクスを用いた新しい学習フレームワークを提案する。
我々のフレームワークは拡散ネットワークの構造とノード感染確率の進化を同時に学習することができる。
論文 参考訳(メタデータ) (2021-06-03T00:02:05Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
インテリジェントサーフェス(IRS)は、個々の散乱素子の位相シフトを制御して無線チャネルを再形成するために用いられる。
散乱素子の規模が大きいため、受動ビームフォーミングは一般に高い計算複雑性によって挑戦される。
本稿では、IRS支援無線ネットワークの性能向上のための機械学習(ML)アプローチに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-29T08:39:43Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
ディープニューラルネットワークは、さまざまな分類と推論タスクに対して最先端のパフォーマンスを達成する。
グラデーションと非進化性の組み合わせは、学習を新しい問題の影響を受けやすいものにする。
確率変数を用いて学習した深層ネットワークの近傍層を融合する手法を提案する。
論文 参考訳(メタデータ) (2020-01-28T18:25:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。