Limitations of Quantum Approximate Optimization in Solving Generic Higher-Order Constraint-Satisfaction Problems
- URL: http://arxiv.org/abs/2411.19388v1
- Date: Thu, 28 Nov 2024 21:39:58 GMT
- Title: Limitations of Quantum Approximate Optimization in Solving Generic Higher-Order Constraint-Satisfaction Problems
- Authors: Thorge Müller, Ajainderpal Singh, Frank K. Wilhelm, Tim Bode,
- Abstract summary: The ability of the Quantum Approximate Optimization Algorithm to deliver a quantum advantage on optimization problems is still unclear.
We analyze the QAOA's performance on random Max-$k$XOR as a function of $k$ and the clause-to-variable ratio.
We find that reaching high levels of satisfaction would require extremely large $p$, which must be considered rather difficult both in the variational context and on near-term devices.
- Score: 0.0
- License:
- Abstract: The ability of the Quantum Approximate Optimization Algorithm (QAOA) to deliver a quantum advantage on combinatorial optimization problems is still unclear. Recently, a scaling advantage over a classical solver was postulated to exist for random 8-SAT at the satisfiability threshold. At the same time, the viability of quantum error mitigation for deep circuits on near-term devices has been put in doubt. Here, we analyze the QAOA's performance on random Max-$k$XOR as a function of $k$ and the clause-to-variable ratio. As a classical benchmark, we use the Mean-Field Approximate Optimization Algorithm (MF-AOA) and find that it performs better than or equal to the QAOA on average. Still, for large $k$ and numbers of layers $p$, there may remain a window of opportunity for the QAOA. However, by extrapolating our numerical results, we find that reaching high levels of satisfaction would require extremely large $p$, which must be considered rather difficult both in the variational context and on near-term devices.
Related papers
- Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - Quantum Approximate Optimisation for Not-All-Equal SAT [9.427635404752936]
We apply variational quantum algorithm QAOA to a variant of satisfiability problem (SAT): Not-All-Equal SAT.
We show that while the runtime of both solvers scales exponentially with the problem size, the scaling for QAOA is smaller for large enough circuit depths.
arXiv Detail & Related papers (2024-01-05T15:11:24Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
The Quantum Approximate Optimization Algorithm (QAOA) is a highly promising variational quantum algorithm that aims to solve intractable optimization problems.
This comprehensive review offers an overview of the current state of QAOA, encompassing its performance analysis in diverse scenarios.
We conduct a comparative study of selected QAOA extensions and variants, while exploring future prospects and directions for the algorithm.
arXiv Detail & Related papers (2023-06-15T15:28:12Z) - Solving boolean satisfiability problems with the quantum approximate
optimization algorithm [0.05076419064097732]
We study the ability of QAOA to solve hard constraint satisfaction problems, as opposed to quantum computing problems.
We develop analytic bounds on the average success probability of QAOA over random formulae at the satisfiability threshold.
We find that for around 14 ansatz layers, QAOA matches the scaling performance of the highest-performance classical solver.
arXiv Detail & Related papers (2022-08-14T20:39:48Z) - Sampling Frequency Thresholds for Quantum Advantage of Quantum
Approximate Optimization Algorithm [0.7046417074932257]
We compare the performance of the Quantum Approximate Optimization Algorithm (QAOA) with state-of-the-art classical solvers.
We find that classical solvers are capable of producing high-quality approximate solutions in linear time complexity.
Other problems, such as different graphs, weighted MaxCut, maximum independent set, and 3-SAT, may be better suited for achieving quantum advantage on near-term quantum devices.
arXiv Detail & Related papers (2022-06-07T20:59:19Z) - QAOA-in-QAOA: solving large-scale MaxCut problems on small quantum
machines [81.4597482536073]
Quantum approximate optimization algorithms (QAOAs) utilize the power of quantum machines and inherit the spirit of adiabatic evolution.
We propose QAOA-in-QAOA ($textQAOA2$) to solve arbitrary large-scale MaxCut problems using quantum machines.
Our method can be seamlessly embedded into other advanced strategies to enhance the capability of QAOAs in large-scale optimization problems.
arXiv Detail & Related papers (2022-05-24T03:49:10Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
We quantify scaling of the expected resource requirements by optimized circuits for hardware architectures with varying levels of connectivity.
We show the number of measurements, and hence total time to synthesizing solution, grows exponentially in problem size and problem graph degree.
These problems may be alleviated by increasing hardware connectivity or by recently proposed modifications to the QAOA that achieve higher performance with fewer circuit layers.
arXiv Detail & Related papers (2022-01-06T21:02:30Z) - Quantum Computational Phase Transition in Combinatorial Problems [0.966840768820136]
Quantum Approximate Optimization algorithm (QAOA) aims to search for approximate solutions to discrete optimization problems with near-term quantum computers.
We identify a computational phase transition of QAOA when solving hard problems such as SAT.
We show that the high problem density region, which limits QAOA's performance in hard optimization problems, is actually a good place to utilize QAOA.
arXiv Detail & Related papers (2021-09-27T20:46:52Z) - Hybrid quantum-classical algorithms for approximate graph coloring [65.62256987706128]
We show how to apply the quantum approximate optimization algorithm (RQAOA) to MAX-$k$-CUT, the problem of finding an approximate $k$-vertex coloring of a graph.
We construct an efficient classical simulation algorithm which simulates level-$1$ QAOA and level-$1$ RQAOA for arbitrary graphs.
arXiv Detail & Related papers (2020-11-26T18:22:21Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Evaluation of QAOA based on the approximation ratio of individual
samples [0.0]
We simulate the performance of QAOA applied to the Max-Cut problem and compare it with some of the best classical alternatives.
Because of the evolving QAOA computational complexity-theoretic guidance, we utilize a framework for the search for quantum advantage.
arXiv Detail & Related papers (2020-06-08T18:00:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.