On the effectiveness of discrete representations in sparse mixture of experts
- URL: http://arxiv.org/abs/2411.19402v1
- Date: Thu, 28 Nov 2024 22:32:01 GMT
- Title: On the effectiveness of discrete representations in sparse mixture of experts
- Authors: Giang Do, Kha Pham, Hung Le, Truyen Tran,
- Abstract summary: We propose a new architecture dubbed Vector-Quantized Mixture of Experts (VQMoE)
VQMoE is an effective solution for scaling up model capacity without increasing the computational costs.
We show that VQMoE achieves a 28% improvement in routers compared to other SMoE routing methods.
- Score: 33.809432499123275
- License:
- Abstract: Sparse mixture of experts (SMoE) is an effective solution for scaling up model capacity without increasing the computational costs. A crucial component of SMoE is the router, responsible for directing the input to relevant experts; however, it also presents a major weakness, leading to routing inconsistencies and representation collapse issues. Instead of fixing the router like previous works, we propose an alternative that assigns experts to input via indirection, which employs the discrete representation of input that points to the expert. The discrete representations are learnt via vector quantization, resulting in a new architecture dubbed Vector-Quantized Mixture of Experts (VQMoE). We provide theoretical support and empirical evidence demonstrating the VQMoE's ability to overcome the challenges present in traditional routers. Through extensive evaluations on both large language models and vision tasks for pre-training and fine-tuning, we show that VQMoE achieves a 28% improvement in robustness compared to other SMoE routing methods, while maintaining strong performance in fine-tuning tasks.
Related papers
- ViMoE: An Empirical Study of Designing Vision Mixture-of-Experts [71.11994027685974]
We study the potential of applying MoE to vision through a comprehensive study on image classification and semantic segmentation.
We observe that the performance is sensitive to the configuration of MoE layers, making it challenging to obtain optimal results without careful design.
We introduce a shared expert to learn and capture common knowledge, serving as an effective way to construct stable ViMoE.
arXiv Detail & Related papers (2024-10-21T07:51:17Z) - Harder Tasks Need More Experts: Dynamic Routing in MoE Models [58.18526590138739]
We introduce a novel dynamic expert selection framework for Mixture of Experts (MoE) models.
Our method dynamically selects experts based on the confidence level in expert selection for each input.
arXiv Detail & Related papers (2024-03-12T13:41:15Z) - HyperMoE: Towards Better Mixture of Experts via Transferring Among Experts [25.504602853436047]
Mixture of Experts (MoE) for language models has been proven effective in augmenting the capacity of models by dynamically routing each input token to a specific subset of experts for processing.
We propose HyperMoE, a novel MoE framework built upon Hypernetworks.
This framework integrates the computational processes of MoE with the concept of knowledge transferring in multi-task learning.
arXiv Detail & Related papers (2024-02-20T02:09:55Z) - CompeteSMoE -- Effective Training of Sparse Mixture of Experts via
Competition [52.2034494666179]
Sparse mixture of experts (SMoE) offers an appealing solution to scale up the model complexity beyond the mean of increasing the network's depth or width.
We propose a competition mechanism to address this fundamental challenge of representation collapse.
By routing inputs only to experts with the highest neural response, we show that, under mild assumptions, competition enjoys the same convergence rate as the optimal estimator.
arXiv Detail & Related papers (2024-02-04T15:17:09Z) - Diversifying the Mixture-of-Experts Representation for Language Models with Orthogonal Optimizer [59.43462055143123]
The Mixture of Experts (MoE) has emerged as a highly successful technique in deep learning.
In this study, we shed light on the homogeneous representation problem, wherein experts in the MoE fail to specialize and lack diversity.
We propose an alternating training strategy that encourages each expert to update in a direction to the subspace spanned by other experts.
arXiv Detail & Related papers (2023-10-15T07:20:28Z) - MoEC: Mixture of Expert Clusters [93.63738535295866]
Sparsely Mixture of Experts (MoE) has received great interest due to its promising scaling capability with affordable computational overhead.
MoE converts dense layers into sparse experts, and utilizes a gated routing network to make experts conditionally activated.
However, as the number of experts grows, MoE with outrageous parameters suffers from overfitting and sparse data allocation.
arXiv Detail & Related papers (2022-07-19T06:09:55Z) - On the Representation Collapse of Sparse Mixture of Experts [102.83396489230375]
Sparse mixture of experts provides larger model capacity while requiring a constant computational overhead.
It employs the routing mechanism to distribute input tokens to the best-matched experts according to their hidden representations.
However, learning such a routing mechanism encourages token clustering around expert centroids, implying a trend toward representation collapse.
arXiv Detail & Related papers (2022-04-20T01:40:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.