Multi-task CNN Behavioral Embedding Model For Transaction Fraud Detection
- URL: http://arxiv.org/abs/2411.19457v1
- Date: Fri, 29 Nov 2024 03:58:11 GMT
- Title: Multi-task CNN Behavioral Embedding Model For Transaction Fraud Detection
- Authors: Bo Qu, Zhurong Wang, Minghao Gu, Daisuke Yagi, Yang Zhao, Yinan Shan, Frank Zahradnik,
- Abstract summary: Deep learning methods have become integral to embedding behavior sequence data in fraud detection.
We introduce the multitask CNN behavioral Embedding Model for Transaction Fraud Detection.
Our contributions include 1) introducing a single-layer CNN design featuring multirange kernels which outperform LSTM and Transformer models in terms of scalability and domain-focused inductive bias.
- Score: 6.153407718616422
- License:
- Abstract: The burgeoning e-Commerce sector requires advanced solutions for the detection of transaction fraud. With an increasing risk of financial information theft and account takeovers, deep learning methods have become integral to the embedding of behavior sequence data in fraud detection. However, these methods often struggle to balance modeling capabilities and efficiency and incorporate domain knowledge. To address these issues, we introduce the multitask CNN behavioral Embedding Model for Transaction Fraud Detection. Our contributions include 1) introducing a single-layer CNN design featuring multirange kernels which outperform LSTM and Transformer models in terms of scalability and domain-focused inductive bias, and 2) the integration of positional encoding with CNN to introduce sequence-order signals enhancing overall performance, and 3) implementing multitask learning with randomly assigned label weights, thus removing the need for manual tuning. Testing on real-world data reveals our model's enhanced performance of downstream transaction models and comparable competitiveness with the Transformer Time Series (TST) model.
Related papers
- STORM: A Spatio-Temporal Factor Model Based on Dual Vector Quantized Variational Autoencoders for Financial Trading [55.02735046724146]
In financial trading, factor models are widely used to price assets and capture excess returns from mispricing.
We propose a Spatio-Temporal factOR Model based on dual vector quantized variational autoencoders, named STORM.
Storm extracts features of stocks from temporal and spatial perspectives, then fuses and aligns these features at the fine-grained and semantic level, and represents the factors as multi-dimensional embeddings.
arXiv Detail & Related papers (2024-12-12T17:15:49Z) - Transfer Learning on Multi-Dimensional Data: A Novel Approach to Neural Network-Based Surrogate Modeling [0.0]
Convolutional neural networks (CNNs) have gained popularity as the basis for such surrogate models.
We propose training a CNN surrogate model on a mixture of numerical solutions to both the $d$-dimensional problem and its ($d-1$)-dimensional approximation.
We demonstrate our approach on a multiphase flow test problem, using transfer learning to train a dense fully-convolutional encoder-decoder CNN on the two classes of data.
arXiv Detail & Related papers (2024-10-16T05:07:48Z) - Credit Card Fraud Detection Using Advanced Transformer Model [15.34892016767672]
This study focuses on innovative applications of the latest Transformer models for more robust and precise fraud detection.
We meticulously processed the data sources, balancing the dataset to address the issue of data sparsity significantly.
We conducted performance comparisons with several widely adopted models, including Support Vector Machine (SVM), Random Forest, Neural Network, and Logistic Regression.
arXiv Detail & Related papers (2024-06-06T04:12:57Z) - Towards a Foundation Purchasing Model: Pretrained Generative
Autoregression on Transaction Sequences [0.0]
We present a generative pretraining method that can be used to obtain contextualised embeddings of financial transactions.
We additionally perform large-scale pretraining of an embedding model using a corpus of data from 180 issuing banks containing 5.1 billion transactions.
arXiv Detail & Related papers (2024-01-03T09:32:48Z) - Generative Pretraining at Scale: Transformer-Based Encoding of
Transactional Behavior for Fraud Detection [0.0]
Our model confronts token explosion and reconstructs behavioral sequences, providing a nuanced understanding of transactional behavior.
We integrate a differential convolutional approach to enhance anomaly detection, bolstering the security and efficacy of one of the largest online payment merchants in China.
arXiv Detail & Related papers (2023-12-22T03:15:17Z) - Explainable Fraud Detection with Deep Symbolic Classification [4.1205832766381985]
We present Deep Classification, an extension of the Deep Symbolic Regression framework to classification problems.
Because the functions are mathematical expressions that are in closed-form and concise, the model is inherently explainable both at the level of a single classification decision and the model's decision process.
An evaluation on the PaySim data set demonstrates competitive predictive performance with state-of-the-art models, while surpassing them in terms of explainability.
arXiv Detail & Related papers (2023-12-01T13:50:55Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - Confidence Attention and Generalization Enhanced Distillation for
Continuous Video Domain Adaptation [62.458968086881555]
Continuous Video Domain Adaptation (CVDA) is a scenario where a source model is required to adapt to a series of individually available changing target domains.
We propose a Confidence-Attentive network with geneRalization enhanced self-knowledge disTillation (CART) to address the challenge in CVDA.
arXiv Detail & Related papers (2023-03-18T16:40:10Z) - Bi-Bimodal Modality Fusion for Correlation-Controlled Multimodal
Sentiment Analysis [96.46952672172021]
Bi-Bimodal Fusion Network (BBFN) is a novel end-to-end network that performs fusion on pairwise modality representations.
Model takes two bimodal pairs as input due to known information imbalance among modalities.
arXiv Detail & Related papers (2021-07-28T23:33:42Z) - A Driving Behavior Recognition Model with Bi-LSTM and Multi-Scale CNN [59.57221522897815]
We propose a neural network model based on trajectories information for driving behavior recognition.
We evaluate the proposed model on the public BLVD dataset, achieving a satisfying performance.
arXiv Detail & Related papers (2021-03-01T06:47:29Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.