TQA-Bench: Evaluating LLMs for Multi-Table Question Answering with Scalable Context and Symbolic Extension
- URL: http://arxiv.org/abs/2411.19504v1
- Date: Fri, 29 Nov 2024 06:48:13 GMT
- Title: TQA-Bench: Evaluating LLMs for Multi-Table Question Answering with Scalable Context and Symbolic Extension
- Authors: Zipeng Qiu, You Peng, Guangxin He, Binhang Yuan, Chen Wang,
- Abstract summary: We present TQA-Bench, a new multi-table QA benchmark designed to evaluate the capabilities of large language models (LLMs) in tackling complex QA tasks over relational data.
Our benchmark incorporates diverse relational database instances sourced from real-world public datasets.
We systematically evaluate a range of LLMs, both open-source and closed-source, spanning model scales from 7 billion to 70 billion parameters.
- Score: 8.489816179329832
- License:
- Abstract: The advent of large language models (LLMs) has unlocked great opportunities in complex data management tasks, particularly in question answering (QA) over complicated multi-table relational data. Despite significant progress, systematically evaluating LLMs on multi-table QA remains a critical challenge due to the inherent complexity of analyzing heterogeneous table structures and potential large scale of serialized relational data. Existing benchmarks primarily focus on single-table QA, failing to capture the intricacies of reasoning across multiple relational tables, as required in real-world domains such as finance, healthcare, and e-commerce. To address this gap, we present TQA-Bench, a new multi-table QA benchmark designed to evaluate the capabilities of LLMs in tackling complex QA tasks over relational data. Our benchmark incorporates diverse relational database instances sourced from real-world public datasets and introduces a flexible sampling mechanism to create tasks with varying multi-table context lengths, ranging from 8K to 64K tokens. To ensure robustness and reliability, we integrate symbolic extensions into the evaluation framework, enabling the assessment of LLM reasoning capabilities beyond simple data retrieval or probabilistic pattern matching. We systematically evaluate a range of LLMs, both open-source and closed-source, spanning model scales from 7 billion to 70 billion parameters. Our extensive experiments reveal critical insights into the performance of LLMs in multi-table QA, highlighting both challenges and opportunities for advancing their application in complex, data-driven environments. Our benchmark implementation and results are available at https://github.com/Relaxed-System-Lab/TQA-Bench.
Related papers
- Efficient Multi-Agent Collaboration with Tool Use for Online Planning in Complex Table Question Answering [16.790216473975146]
Complex table question answering (TQA) aims to answer questions that require complex reasoning, such as multi-step or multi-category reasoning.
Previous approaches demonstrated notable performance by leveraging either closed-source large language models (LLMs) or fine-tuned open-weight LLMs.
We propose Multi-Agent Collaboration with Tool use (MACT), a framework that requires neither closed-source models nor fine-tuning.
arXiv Detail & Related papers (2024-12-28T13:13:33Z) - Evaluating and Enhancing LLMs for Multi-turn Text-to-SQL with Multiple Question Types [11.391598870596392]
Large language models (LLMs) have significantly advanced text-to-speech systems.
LLMs often narrowly focus on SQL generation, neglecting the complexities of real-world conversational queries.
We introduce an LLM-based multi-agent framework that employs specialized agents to identify question types and determine appropriate answering strategies.
Our experiments demonstrate that this approach significantly enhances the model's ability to navigate the complexities of conversational dynamics.
arXiv Detail & Related papers (2024-12-21T10:13:45Z) - MAmmoTH-VL: Eliciting Multimodal Reasoning with Instruction Tuning at Scale [66.73529246309033]
multimodal large language models (MLLMs) have shown significant potential in a broad range of multimodal tasks.
Existing instruction-tuning datasets only provide phrase-level answers without any intermediate rationales.
We introduce a scalable and cost-effective method to construct a large-scale multimodal instruction-tuning dataset with rich intermediate rationales.
arXiv Detail & Related papers (2024-12-06T18:14:24Z) - DiscoveryBench: Towards Data-Driven Discovery with Large Language Models [50.36636396660163]
We present DiscoveryBench, the first comprehensive benchmark that formalizes the multi-step process of data-driven discovery.
Our benchmark contains 264 tasks collected across 6 diverse domains, such as sociology and engineering.
Our benchmark, thus, illustrates the challenges in autonomous data-driven discovery and serves as a valuable resource for the community to make progress.
arXiv Detail & Related papers (2024-07-01T18:58:22Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
Long-context language models (LCLMs) have the potential to revolutionize our approach to tasks traditionally reliant on external tools like retrieval systems or databases.
We introduce LOFT, a benchmark of real-world tasks requiring context up to millions of tokens designed to evaluate LCLMs' performance on in-context retrieval and reasoning.
Our findings reveal LCLMs' surprising ability to rival state-of-the-art retrieval and RAG systems, despite never having been explicitly trained for these tasks.
arXiv Detail & Related papers (2024-06-19T00:28:58Z) - ERATTA: Extreme RAG for Table To Answers with Large Language Models [1.3318204310917532]
Large language models (LLMs) with retrieval augmented-generation (RAG) have been the optimal choice for scalable generative AI solutions.
We propose a unique LLM-based system where multiple LLMs can be invoked to enable data authentication, user-query routing, data-retrieval and custom prompting for question-answering capabilities from Enterprise-data tables.
Our proposed system and scoring metrics achieve >90% confidence scores across hundreds of user queries in the sustainability, financial health and social media domains.
arXiv Detail & Related papers (2024-05-07T02:49:59Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) have emerged as a promising approach to enhancing response accuracy in several tasks, such as Question-Answering (QA)
We propose a novel adaptive QA framework, that can dynamically select the most suitable strategy for (retrieval-augmented) LLMs based on the query complexity.
We validate our model on a set of open-domain QA datasets, covering multiple query complexities, and show that ours enhances the overall efficiency and accuracy of QA systems.
arXiv Detail & Related papers (2024-03-21T13:52:30Z) - ERBench: An Entity-Relationship based Automatically Verifiable Hallucination Benchmark for Large Language Models [46.07900122810749]
Large language models (LLMs) have achieved unprecedented performances in various applications, yet evaluating them is still challenging.
We contend that utilizing existing relational databases is a promising approach for constructing benchmarks.
We propose ERBench, which uses these integrity constraints to convert any database into an LLM benchmark.
arXiv Detail & Related papers (2024-03-08T12:42:36Z) - On Evaluating the Integration of Reasoning and Action in LLM Agents with
Database Question Answering [25.57202500348071]
This study introduces a new long-form database question answering dataset designed to evaluate how Large Language Models interact with a database.
The task requires LLMs to strategically generate multiplesql queries to retrieve sufficient data from a database, to reason with the acquired context, and to synthesize them into a comprehensive analytical narrative.
We propose and evaluate two interaction strategies, and provide a fine-grained analysis of the individual stages within the interaction.
arXiv Detail & Related papers (2023-11-16T09:55:07Z) - Self-prompted Chain-of-Thought on Large Language Models for Open-domain
Multi-hop Reasoning [70.74928578278957]
In open-domain question-answering (ODQA), most existing questions require single-hop reasoning on commonsense.
Large language models (LLMs) have found significant utility in facilitating ODQA without external corpus.
We propose Self-prompted Chain-of-Thought (SP-CoT), an automated framework to mass-produce high quality CoTs.
arXiv Detail & Related papers (2023-10-20T14:51:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.