Graph-Enhanced EEG Foundation Model
- URL: http://arxiv.org/abs/2411.19507v2
- Date: Thu, 06 Feb 2025 15:25:04 GMT
- Title: Graph-Enhanced EEG Foundation Model
- Authors: Limin Wang, Toyotaro Suzumura, Hiroki Kanezashi,
- Abstract summary: We propose a novel foundation model for EEG that integrates both temporal and inter-channel information.
Our architecture combines Graph Neural Networks (GNNs), which effectively capture relational structures, with a masked autoencoder to enable efficient pre-training.
- Score: 16.335330142000657
- License:
- Abstract: Electroencephalography (EEG) signals provide critical insights for applications in disease diagnosis and healthcare. However, the scarcity of labeled EEG data poses a significant challenge. Foundation models offer a promising solution by leveraging large-scale unlabeled data through pre-training, enabling strong performance across diverse tasks. While both temporal dynamics and inter-channel relationships are vital for understanding EEG signals, existing EEG foundation models primarily focus on the former, overlooking the latter. To address this limitation, we propose a novel foundation model for EEG that integrates both temporal and inter-channel information. Our architecture combines Graph Neural Networks (GNNs), which effectively capture relational structures, with a masked autoencoder to enable efficient pre-training. We evaluated our approach using three downstream tasks and experimented with various GNN architectures. The results demonstrate that our proposed model, particularly when employing the GCN architecture with optimized configurations, consistently outperformed baseline methods across all tasks. These findings suggest that our model serves as a robust foundation model for EEG analysis.
Related papers
- CEReBrO: Compact Encoder for Representations of Brain Oscillations Using Efficient Alternating Attention [53.539020807256904]
We introduce a Compact for Representations of Brain Oscillations using alternating attention (CEReBrO)
Our tokenization scheme represents EEG signals at a per-channel patch.
We propose an alternating attention mechanism that jointly models intra-channel temporal dynamics and inter-channel spatial correlations, achieving 2x speed improvement with 6x less memory required compared to standard self-attention.
arXiv Detail & Related papers (2025-01-18T21:44:38Z) - CognitionCapturer: Decoding Visual Stimuli From Human EEG Signal With Multimodal Information [61.1904164368732]
We propose CognitionCapturer, a unified framework that fully leverages multimodal data to represent EEG signals.
Specifically, CognitionCapturer trains Modality Experts for each modality to extract cross-modal information from the EEG modality.
The framework does not require any fine-tuning of the generative models and can be extended to incorporate more modalities.
arXiv Detail & Related papers (2024-12-13T16:27:54Z) - Graph Adapter of EEG Foundation Models for Parameter Efficient Fine Tuning [1.8946099300030472]
We propose EEG-GraphAdapter (EGA), a parameter-efficient fine-tuning (PEFT) approach designed to address these challenges.
EGA is integrated into a pre-trained temporal backbone model as a GNN-based module, freezing the backbone and allowing only the adapter to be fine-tuned.
Experimental evaluations on two healthcare-related downstream tasks-Major Depressive Disorder (MDD) and Abnormality Detection (TUAB)-show that EGA improves performance by up to 16.1% in F1-score compared with the backbone BENDR model.
arXiv Detail & Related papers (2024-11-25T07:30:52Z) - EEGPT: Unleashing the Potential of EEG Generalist Foundation Model by Autoregressive Pre-training [9.57946371147345]
EEGPT is the first generalist EEG foundation model designed to address these challenges.
First, we propose an electrode-wise modeling strategy that treats each electrode as a fundamental unit.
Second, we develop the first autoregressive EEG pre-trained model.
Third, we introduce a multi-task transfer learning paradigm using a learnable electrode graph network.
arXiv Detail & Related papers (2024-10-14T12:17:54Z) - Automated Fusion of Multimodal Electronic Health Records for Better
Medical Predictions [48.0590120095748]
We propose a novel neural architecture search (NAS) framework named AutoFM, which can automatically search for the optimal model architectures for encoding diverse input modalities and fusion strategies.
We conduct thorough experiments on real-world multi-modal EHR data and prediction tasks, and the results demonstrate that our framework achieves significant performance improvement over existing state-of-the-art methods.
arXiv Detail & Related papers (2024-01-20T15:14:14Z) - EEGFormer: Towards Transferable and Interpretable Large-Scale EEG
Foundation Model [39.363511340878624]
We present a novel EEG foundation model, namely EEGFormer, pretrained on large-scale compound EEG data.
To validate the effectiveness of our model, we extensively evaluate it on various downstream tasks and assess the performance under different transfer settings.
arXiv Detail & Related papers (2024-01-11T17:36:24Z) - hvEEGNet: exploiting hierarchical VAEs on EEG data for neuroscience
applications [3.031375888004876]
Two main issues challenge the existing DL-based modeling methods for EEG.
High variability between subjects and low signal-to-noise ratio make it difficult to ensure a good quality in the EEG data.
We propose two variational autoencoder models, namely vEEGNet-ver3 and hvEEGNet, to target the problem of high-fidelity EEG reconstruction.
arXiv Detail & Related papers (2023-11-20T15:36:31Z) - Neuro-GPT: Towards A Foundation Model for EEG [0.04188114563181615]
We propose Neuro-GPT, a foundation model consisting of an EEG encoder and a GPT model.
Foundation model is pre-trained on a large-scale data set using a self-supervised task that learns how to reconstruct masked EEG segments.
Experiments demonstrate that applying a foundation model can significantly improve classification performance compared to a model trained from scratch.
arXiv Detail & Related papers (2023-11-07T07:07:18Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis [50.972595036856035]
We present a code that successfully replicates results from six popular and recent graph recommendation models.
We compare these graph models with traditional collaborative filtering models that historically performed well in offline evaluations.
By investigating the information flow from users' neighborhoods, we aim to identify which models are influenced by intrinsic features in the dataset structure.
arXiv Detail & Related papers (2023-08-01T09:31:44Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.