hvEEGNet: exploiting hierarchical VAEs on EEG data for neuroscience
applications
- URL: http://arxiv.org/abs/2312.00799v1
- Date: Mon, 20 Nov 2023 15:36:31 GMT
- Title: hvEEGNet: exploiting hierarchical VAEs on EEG data for neuroscience
applications
- Authors: Giulia Cisotto, Alberto Zancanaro, Italo F. Zoppis, Sara L. Manzoni
- Abstract summary: Two main issues challenge the existing DL-based modeling methods for EEG.
High variability between subjects and low signal-to-noise ratio make it difficult to ensure a good quality in the EEG data.
We propose two variational autoencoder models, namely vEEGNet-ver3 and hvEEGNet, to target the problem of high-fidelity EEG reconstruction.
- Score: 3.031375888004876
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the recent success of artificial intelligence in neuroscience, a number
of deep learning (DL) models were proposed for classification, anomaly
detection, and pattern recognition tasks in electroencephalography (EEG). EEG
is a multi-channel time-series that provides information about the individual
brain activity for diagnostics, neuro-rehabilitation, and other applications
(including emotions recognition). Two main issues challenge the existing
DL-based modeling methods for EEG: the high variability between subjects and
the low signal-to-noise ratio making it difficult to ensure a good quality in
the EEG data. In this paper, we propose two variational autoencoder models,
namely vEEGNet-ver3 and hvEEGNet, to target the problem of high-fidelity EEG
reconstruction. We properly designed their architectures using the blocks of
the well-known EEGNet as the encoder, and proposed a loss function based on
dynamic time warping. We tested the models on the public Dataset 2a - BCI
Competition IV, where EEG was collected from 9 subjects and 22 channels.
hvEEGNet was found to reconstruct the EEG data with very high-fidelity,
outperforming most previous solutions (including our vEEGNet-ver3 ).
Furthermore, this was consistent across all subjects. Interestingly, hvEEGNet
made it possible to discover that this popular dataset includes a number of
corrupted EEG recordings that might have influenced previous literature
results. We also investigated the training behaviour of our models and related
it with the quality and the size of the input EEG dataset, aiming at opening a
new research debate on this relationship. In the future, hvEEGNet could be used
as anomaly (e.g., artefact) detector in large EEG datasets to support the
domain experts, but also the latent representations it provides could be used
in other classification problems and EEG data generation.
Related papers
- EEGPT: Unleashing the Potential of EEG Generalist Foundation Model by Autoregressive Pre-training [9.57946371147345]
EEGPT is the first generalist EEG foundation model designed to address these challenges.
First, we propose an electrode-wise modeling strategy that treats each electrode as a fundamental unit.
Second, we develop the first autoregressive EEG pre-trained model.
Third, we introduce a multi-task transfer learning paradigm using a learnable electrode graph network.
arXiv Detail & Related papers (2024-10-14T12:17:54Z) - RISE-iEEG: Robust to Inter-Subject Electrodes Implantation Variability iEEG Classifier [0.0]
RISE-iEEG stands for Robust Inter-Subject Electrode Implantation Variability iEEG.
We developed an iEEG decoder model that can be applied across multiple patients' data without requiring the coordinates of electrode for each patient.
Our analysis shows that the performance of RISE-iEEG is 10% higher than that of HTNet and EEGNet in terms of F1 score.
arXiv Detail & Related papers (2024-08-12T18:33:19Z) - vEEGNet: learning latent representations to reconstruct EEG raw data via
variational autoencoders [3.031375888004876]
We propose vEEGNet, a DL architecture with two modules, i.e., an unsupervised module based on variational autoencoders to extract a latent representation of the data, and a supervised module based on a feed-forward neural network to classify different movements.
We show state-of-the-art classification performance, and the ability to reconstruct both low-frequency and middle-range components of the raw EEG.
arXiv Detail & Related papers (2023-11-16T19:24:40Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - MAtt: A Manifold Attention Network for EEG Decoding [0.966840768820136]
We propose a novel geometric learning (GDL)-based model for EEG decoding, featuring a manifold attention network (mAtt)
The evaluation of MAtt on both time-synchronous and -asyncronous EEG datasets suggests its superiority over other leading DL methods for general EEG decoding.
arXiv Detail & Related papers (2022-10-05T02:26:31Z) - Task-oriented Self-supervised Learning for Anomaly Detection in
Electroencephalography [51.45515911920534]
A task-oriented self-supervised learning approach is proposed to train a more effective anomaly detector.
A specific two branch convolutional neural network with larger kernels is designed as the feature extractor.
The effectively designed and trained feature extractor has shown to be able to extract better feature representations from EEGs.
arXiv Detail & Related papers (2022-07-04T13:15:08Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
This paper proposes a novel convolutional neural network (CNN) architecture for accurate and robust EEG-based motor imagery (MI) classification.
The proposed CNN model, namely EEG-Inception, is built on the backbone of the Inception-Time network.
The proposed network is an end-to-end classification, as it takes the raw EEG signals as the input and does not require complex EEG signal-preprocessing.
arXiv Detail & Related papers (2021-01-24T19:03:10Z) - A Novel Transferability Attention Neural Network Model for EEG Emotion
Recognition [51.203579838210885]
We propose a transferable attention neural network (TANN) for EEG emotion recognition.
TANN learns the emotional discriminative information by highlighting the transferable EEG brain regions data and samples adaptively.
This can be implemented by measuring the outputs of multiple brain-region-level discriminators and one single sample-level discriminator.
arXiv Detail & Related papers (2020-09-21T02:42:30Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z) - Data Augmentation for Enhancing EEG-based Emotion Recognition with Deep
Generative Models [13.56090099952884]
We propose three methods for augmenting EEG training data to enhance the performance of emotion recognition models.
For the full usage strategy, all of the generated data are augmented to the training dataset without judging the quality of the generated data.
The experimental results demonstrate that the augmented training datasets produced by our methods enhance the performance of EEG-based emotion recognition models.
arXiv Detail & Related papers (2020-06-04T21:23:09Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
The electrocardiogram (ECG) is one of the most commonly used diagnostic tools in medicine and healthcare.
Deep learning methods have achieved promising results on predictive healthcare tasks using ECG signals.
This paper presents a systematic review of deep learning methods for ECG data from both modeling and application perspectives.
arXiv Detail & Related papers (2019-12-28T02:44:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.