論文の概要: A Local Information Aggregation based Multi-Agent Reinforcement Learning for Robot Swarm Dynamic Task Allocation
- arxiv url: http://arxiv.org/abs/2411.19526v1
- Date: Fri, 29 Nov 2024 07:53:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:18:47.544901
- Title: A Local Information Aggregation based Multi-Agent Reinforcement Learning for Robot Swarm Dynamic Task Allocation
- Title(参考訳): 局所情報集約に基づくロボット群動的タスク割り当てのためのマルチエージェント強化学習
- Authors: Yang Lv, Jinlong Lei, Peng Yi,
- Abstract要約: 分散化された部分観測可能なマルコフ決定プロセス(Dec_POMDP)を用いた新しいフレームワークを提案する。
我々の方法論の核心は、局所情報集約多元決定政策勾配(LIA_MADDPG)アルゴリズムである。
実験により,LIAモジュールは様々なCTDEベースのMARL法にシームレスに統合可能であることが示された。
- 参考スコア(独自算出の注目度): 4.144893164317513
- License:
- Abstract: In this paper, we explore how to optimize task allocation for robot swarms in dynamic environments, emphasizing the necessity of formulating robust, flexible, and scalable strategies for robot cooperation. We introduce a novel framework using a decentralized partially observable Markov decision process (Dec_POMDP), specifically designed for distributed robot swarm networks. At the core of our methodology is the Local Information Aggregation Multi-Agent Deep Deterministic Policy Gradient (LIA_MADDPG) algorithm, which merges centralized training with distributed execution (CTDE). During the centralized training phase, a local information aggregation (LIA) module is meticulously designed to gather critical data from neighboring robots, enhancing decision-making efficiency. In the distributed execution phase, a strategy improvement method is proposed to dynamically adjust task allocation based on changing and partially observable environmental conditions. Our empirical evaluations show that the LIA module can be seamlessly integrated into various CTDE-based MARL methods, significantly enhancing their performance. Additionally, by comparing LIA_MADDPG with six conventional reinforcement learning algorithms and a heuristic algorithm, we demonstrate its superior scalability, rapid adaptation to environmental changes, and ability to maintain both stability and convergence speed. These results underscore LIA_MADDPG's outstanding performance and its potential to significantly improve dynamic task allocation in robot swarms through enhanced local collaboration and adaptive strategy execution.
- Abstract(参考訳): 本稿では,動的環境におけるロボット群に対するタスク割り当ての最適化について検討し,ロボット協調のための堅牢で柔軟な,スケーラブルな戦略の策定の必要性を強調した。
本稿では,分散ロボット群ネットワークに特化して設計された,分散化された部分観測可能なマルコフ決定プロセス(Dec_POMDP)を用いた新しいフレームワークを提案する。
我々の方法論の中核は、分散実行(CTDE)と集中的なトレーニングを統合するLIA_MADDPG(Local Information Aggregation Multi-Agent Deep Deterministic Policy Gradient)アルゴリズムである。
集中トレーニングフェーズにおいて、局所情報集約(LIA)モジュールは、近隣のロボットから重要なデータを収集し、意思決定効率を向上させるために慎重に設計されている。
分散実行フェーズでは,環境条件の変化と部分的に観測可能な条件に基づいてタスク割り当てを動的に調整する戦略改善手法が提案されている。
実験により, LIAモジュールは様々なCTDEベースのMARL法にシームレスに統合され, 性能が著しく向上することが示された。
さらに, LIA_MADDPGを従来の6つの強化学習アルゴリズムとヒューリスティックアルゴリズムと比較することにより, 優れたスケーラビリティ, 環境変化への迅速な適応, 安定性と収束速度の両立性を実証した。
これらの結果は,LIA_MADDPGの卓越した性能と,局所的な協調と適応戦略実行の強化によりロボット群における動的タスク割り当てを大幅に改善する可能性を評価する。
関連論文リスト
- Cluster-Based Multi-Agent Task Scheduling for Space-Air-Ground Integrated Networks [60.085771314013044]
低高度経済は、コミュニケーションやセンシングなどの分野で発展する大きな可能性を秘めている。
本稿では,SAGINにおけるマルチUAV協調タスクスケジューリング問題に対処するため,クラスタリングに基づく多エージェントDeep Deterministic Policy Gradient (CMADDPG)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-12-14T06:17:33Z) - Online Parallel Multi-Task Relationship Learning via Alternating Direction Method of Multipliers [37.859185005986056]
オンラインマルチタスク学習(OMTL)は、複数のタスク間の固有の関係を活用することで、ストリーミングデータ処理を強化する。
本研究では、分散コンピューティング環境に適した最近の最適化である交互方向乗算器法(ADMM)に基づく新しいOMTLフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-09T10:20:13Z) - Cooperative and Asynchronous Transformer-based Mission Planning for Heterogeneous Teams of Mobile Robots [1.1049608786515839]
エージェント間の分散意思決定を協調するための協調型非同期トランスフォーマーベースミッションプランニング(CATMiP)フレームワークを提案する。
我々は,CATMiPを2次元グリッドワールドシミュレーション環境で評価し,その性能を計画に基づく探索法と比較した。
論文 参考訳(メタデータ) (2024-10-08T21:14:09Z) - Distributed Autonomous Swarm Formation for Dynamic Network Bridging [40.27919181139919]
離散化された部分観測可能なマルコフ決定過程(Dec-POMDP)における動的ネットワークブリッジ問題について定式化する。
グラフ畳み込み強化学習(DGN)に基づく問題に対するマルチエージェント強化学習(MARL)アプローチを提案する。
提案手法はシミュレーション環境で評価し,将来性を示す集中型ベースラインと比較した。
論文 参考訳(メタデータ) (2024-04-02T01:45:03Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Macro-Action-Based Multi-Agent/Robot Deep Reinforcement Learning under
Partial Observability [4.111899441919164]
最先端のマルチエージェント強化学習(MARL)手法は、様々な複雑な問題に対して有望な解決策を提供してきた。
まず,MacDec-POMDPに対する値に基づくRL手法を提案する。
3つの訓練パラダイムの下でマクロアクションに基づくポリシー勾配アルゴリズムを定式化する。
論文 参考訳(メタデータ) (2022-09-20T21:13:51Z) - Learning Cooperation and Online Planning Through Simulation and Graph
Convolutional Network [5.505634045241288]
マルチエージェント協調環境のためのシミュレーションベースのオンライン計画アルゴリズム「SiCLOP」を導入する。
具体的には、SiCLOPはMCTS(Monte Carlo Tree Search)を補完し、協調学習にコーディネーショングラフ(CG)とグラフニューラルネットワーク(GCN)を使用する。
また、アクション空間を効果的に刈り取ることによりスケーラビリティも向上する。
論文 参考訳(メタデータ) (2021-10-16T05:54:32Z) - Graph Neural Networks for Decentralized Multi-Robot Submodular Action
Selection [101.38634057635373]
ロボットがチームサブモジュールの目的を最大化するために共同で行動を選択する必要があるアプリケーションに焦点を当てる。
分散通信によるサブモジュール化に向けた汎用学習アーキテクチャを提案する。
大規模ロボットネットワークによるアクティブターゲットカバレッジのシナリオにおいて、GNNベースの学習アプローチのパフォーマンスを実証します。
論文 参考訳(メタデータ) (2021-05-18T15:32:07Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
この研究は、データ駆動メソッドが動的環境でリソース割り当て戦略を継続的に学び、最適化することを可能にする新しいアプローチを開発しています。
学習モデルが新たなエピソードに段階的に適応できるように、連続学習の概念を無線システム設計に組み込むことを提案する。
我々の設計は、異なるデータサンプルにまたがる公平性を保証する、新しい二段階最適化定式化に基づいている。
論文 参考訳(メタデータ) (2021-05-03T07:23:39Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
分散マルチエージェント強化学習アルゴリズムは複雑なアプリケーションでは実践的でないことがある。
本稿では,大規模で汎用的なマルチエージェント設定を扱える,柔軟な完全分散型アクター批判型MARLフレームワークを提案する。
当社のフレームワークは,大規模環境におけるスケーラビリティと安定性を実現し,情報伝達を低減できる。
論文 参考訳(メタデータ) (2020-04-17T14:56:29Z) - Decentralized MCTS via Learned Teammate Models [89.24858306636816]
本稿では,モンテカルロ木探索に基づくトレーニング可能なオンライン分散計画アルゴリズムを提案する。
深層学習と畳み込みニューラルネットワークを用いて正確なポリシー近似を作成可能であることを示す。
論文 参考訳(メタデータ) (2020-03-19T13:10:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。