論文の概要: Distributed Autonomous Swarm Formation for Dynamic Network Bridging
- arxiv url: http://arxiv.org/abs/2404.01557v1
- Date: Tue, 2 Apr 2024 01:45:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 18:18:02.807262
- Title: Distributed Autonomous Swarm Formation for Dynamic Network Bridging
- Title(参考訳): 動的ネットワークブリッジのための分散自律群形成
- Authors: Raffaele Galliera, Thies Möhlenhof, Alessandro Amato, Daniel Duran, Kristen Brent Venable, Niranjan Suri,
- Abstract要約: 離散化された部分観測可能なマルコフ決定過程(Dec-POMDP)における動的ネットワークブリッジ問題について定式化する。
グラフ畳み込み強化学習(DGN)に基づく問題に対するマルチエージェント強化学習(MARL)アプローチを提案する。
提案手法はシミュレーション環境で評価し,将来性を示す集中型ベースラインと比較した。
- 参考スコア(独自算出の注目度): 40.27919181139919
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Effective operation and seamless cooperation of robotic systems are a fundamental component of next-generation technologies and applications. In contexts such as disaster response, swarm operations require coordinated behavior and mobility control to be handled in a distributed manner, with the quality of the agents' actions heavily relying on the communication between them and the underlying network. In this paper, we formulate the problem of dynamic network bridging in a novel Decentralized Partially Observable Markov Decision Process (Dec-POMDP), where a swarm of agents cooperates to form a link between two distant moving targets. Furthermore, we propose a Multi-Agent Reinforcement Learning (MARL) approach for the problem based on Graph Convolutional Reinforcement Learning (DGN) which naturally applies to the networked, distributed nature of the task. The proposed method is evaluated in a simulated environment and compared to a centralized heuristic baseline showing promising results. Moreover, a further step in the direction of sim-to-real transfer is presented, by additionally evaluating the proposed approach in a near Live Virtual Constructive (LVC) UAV framework.
- Abstract(参考訳): ロボットシステムの効果的な操作とシームレスな協調は、次世代技術や応用の基本的な構成要素である。
災害対応などの文脈では、Swarm操作は協調行動と移動制御を分散的に扱う必要があり、エージェントの行動の質はそれらと基盤となるネットワーク間の通信に大きく依存する。
本稿では,分散化された部分観測可能なマルコフ決定プロセス(Dec-POMDP)において,エージェント群が協調して2つの移動目標間のリンクを形成する動的ネットワークブリッジの問題を定式化する。
さらに,グラフ畳み込み強化学習(DGN)に基づくマルチエージェント強化学習(MARL)手法を提案する。
提案手法はシミュレーション環境で評価し,将来性を示す集中型ヒューリスティックベースラインと比較した。
さらに、LVC(Live Virtual Constructive) UAV(Live Virtual Constructive) UAV)フレームワークにおいて、提案手法を更に評価することにより、sim-to-realトランスファーの方向性のさらなるステップを示す。
関連論文リスト
- MAGNNET: Multi-Agent Graph Neural Network-based Efficient Task Allocation for Autonomous Vehicles with Deep Reinforcement Learning [2.5022287664959446]
本稿では,グラフニューラルネットワーク(GNN)を一元的トレーニングと分散実行(CTDE)パラダイムに統合する新しいフレームワークを提案する。
本手法により,無人航空機 (UAV) と無人地上車両 (UGV) は, 中央調整を必要とせず, 効率よくタスクを割り当てることができる。
論文 参考訳(メタデータ) (2025-02-04T13:29:56Z) - Heterogeneous Multi-Agent Reinforcement Learning for Distributed Channel Access in WLANs [47.600901884970845]
本稿では,マルチエージェント強化学習(MARL)を用いて,無線ローカルネットワークにおける分散チャネルアクセスに対処する。
特に、エージェントがモデルトレーニングに価値ベースまたはポリシーベースの強化学習アルゴリズムを不均一に採用する、より実践的なケースについて考察する。
我々は、分散実行パラダイムを用いた集中型トレーニングを採用し、異種エージェントの協調を可能にする、異種MARLトレーニングフレームワークQPMIXを提案する。
論文 参考訳(メタデータ) (2024-12-18T13:50:31Z) - Cluster-Based Multi-Agent Task Scheduling for Space-Air-Ground Integrated Networks [60.085771314013044]
低高度経済は、コミュニケーションやセンシングなどの分野で発展する大きな可能性を秘めている。
本稿では,SAGINにおけるマルチUAV協調タスクスケジューリング問題に対処するため,クラスタリングに基づく多エージェントDeep Deterministic Policy Gradient (CMADDPG)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-12-14T06:17:33Z) - A Local Information Aggregation based Multi-Agent Reinforcement Learning for Robot Swarm Dynamic Task Allocation [4.144893164317513]
分散化された部分観測可能なマルコフ決定プロセス(Dec_POMDP)を用いた新しいフレームワークを提案する。
我々の方法論の核心は、局所情報集約多元決定政策勾配(LIA_MADDPG)アルゴリズムである。
実験により,LIAモジュールは様々なCTDEベースのMARL法にシームレスに統合可能であることが示された。
論文 参考訳(メタデータ) (2024-11-29T07:53:05Z) - Performance-Aware Self-Configurable Multi-Agent Networks: A Distributed Submodular Approach for Simultaneous Coordination and Network Design [3.5527561584422465]
本稿では、AlterNAting Coordination and Network-Design Algorithm(Anaconda)を紹介する。
Anacondaはスケーラブルなアルゴリズムで、ほぼ最適性を保証する。
地域モニタリングのシミュレーションシナリオを実演し,それを最先端のアルゴリズムと比較する。
論文 参考訳(メタデータ) (2024-09-02T18:11:33Z) - Semantic Communication for Cooperative Perception using HARQ [51.148203799109304]
我々は重要セマンティック情報を抽出するために重要地図を活用し、協調的な知覚セマンティックコミュニケーションフレームワークを導入する。
周波数分割多重化(OFDM)とチャネル推定と等化戦略を併用して,時間変化によるマルチパスフェーディングによる課題に対処する。
我々は,ハイブリッド自動繰り返し要求(HARQ)の精神において,我々の意味コミュニケーションフレームワークと統合された新しい意味エラー検出手法を提案する。
論文 参考訳(メタデータ) (2024-08-29T08:53:26Z) - Intelligent Hybrid Resource Allocation in MEC-assisted RAN Slicing Network [72.2456220035229]
我々は,協調型MEC支援RANスライシングシステムにおける異種サービス要求に対するSSRの最大化を目指す。
最適ハイブリッドRAポリシーをインテリジェントに学習するためのRGRLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-02T01:36:13Z) - Collaborative Information Dissemination with Graph-based Multi-Agent
Reinforcement Learning [2.9904113489777826]
本稿では,効率的な情報伝達のためのマルチエージェント強化学習(MARL)手法を提案する。
本稿では,各エージェントが個別にメッセージ転送を決定するための情報発信のための部分観測可能なゲーム(POSG)を提案する。
実験の結果,既存の手法よりも訓練済みの方針が優れていることがわかった。
論文 参考訳(メタデータ) (2023-08-25T21:30:16Z) - Decentralized MCTS via Learned Teammate Models [89.24858306636816]
本稿では,モンテカルロ木探索に基づくトレーニング可能なオンライン分散計画アルゴリズムを提案する。
深層学習と畳み込みニューラルネットワークを用いて正確なポリシー近似を作成可能であることを示す。
論文 参考訳(メタデータ) (2020-03-19T13:10:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。