Contextual Checkerboard Denoise -- A Novel Neural Network-Based Approach for Classification-Aware OCT Image Denoising
- URL: http://arxiv.org/abs/2411.19549v1
- Date: Fri, 29 Nov 2024 08:51:43 GMT
- Title: Contextual Checkerboard Denoise -- A Novel Neural Network-Based Approach for Classification-Aware OCT Image Denoising
- Authors: Md. Touhidul Islam, Md. Abtahi M. Chowdhury, Sumaiya Salekin, Aye T. Maung, Akil A. Taki, Hafiz Imtiaz,
- Abstract summary: We introduce a novel neural network based method -- emphContextual Checkerboard Denoising, that can learn denoising from only a dataset of noisy images.
Our proposed method significantly improves image quality, providing clearer and more detailed OCT images, while enhancing diagnostic accuracy.
- Score: 1.8032335403003321
- License:
- Abstract: In contrast to non-medical image denoising, where enhancing image clarity is the primary goal, medical image denoising warrants preservation of crucial features without introduction of new artifacts. However, many denoising methods that improve the clarity of the image, inadvertently alter critical information of the denoised images, potentially compromising classification performance and diagnostic quality. Additionally, supervised denoising methods are not very practical in medical image domain, since a \emph{ground truth} denoised version of a noisy medical image is often extremely challenging to obtain. In this paper, we tackle both of these problems by introducing a novel neural network based method -- \emph{Contextual Checkerboard Denoising}, that can learn denoising from only a dataset of noisy images, while preserving crucial anatomical details necessary for image classification/analysis. We perform our experimentation on real Optical Coherence Tomography (OCT) images, and empirically demonstrate that our proposed method significantly improves image quality, providing clearer and more detailed OCT images, while enhancing diagnostic accuracy.
Related papers
- Motion Artifact Removal in Pixel-Frequency Domain via Alternate Masks and Diffusion Model [58.694932010573346]
Motion artifacts present in magnetic resonance imaging (MRI) can seriously interfere with clinical diagnosis.
We propose a novel unsupervised purification method which leverages pixel-frequency information of noisy MRI images to guide a pre-trained diffusion model to recover clean MRI images.
arXiv Detail & Related papers (2024-12-10T15:25:18Z) - Neighboring Slice Noise2Noise: Self-Supervised Medical Image Denoising from Single Noisy Image Volume [12.077993066353294]
We propose a novel self-supervised medical image denoising method, Neighboring Slice Noise2Noise (NS-N2N)
NS-N2N only requires a single noisy image volume obtained from one medical imaging procedure to achieve high-quality denoising of the image volume itself.
arXiv Detail & Related papers (2024-11-16T16:24:28Z) - Masked Image Training for Generalizable Deep Image Denoising [53.03126421917465]
We present a novel approach to enhance the generalization performance of denoising networks.
Our method involves masking random pixels of the input image and reconstructing the missing information during training.
Our approach exhibits better generalization ability than other deep learning models and is directly applicable to real-world scenarios.
arXiv Detail & Related papers (2023-03-23T09:33:44Z) - Lesion-Inspired Denoising Network: Connecting Medical Image Denoising
and Lesion Detection [6.170271503640482]
We propose Lesion-Inspired Denoising Network (LIDnet) to improve both denoising performance and lesion detection accuracy.
Experiments show that, by equipping with LIDnet, both of the denoising and lesion detection performance of baseline methods can be significantly improved.
arXiv Detail & Related papers (2021-04-18T12:53:36Z) - Noise Conscious Training of Non Local Neural Network powered by Self
Attentive Spectral Normalized Markovian Patch GAN for Low Dose CT Denoising [20.965610734723636]
Deep learning-based technique has emerged as a dominant method for low dose CT(LDCT) denoising.
In this study, we propose a novel convolutional module as the first attempt to utilize neighborhood similarity of CT images for denoising tasks.
Next, we moved towards the problem of non-stationarity of CT noise and introduced a new noise aware mean square error loss for LDCT denoising.
arXiv Detail & Related papers (2020-11-11T10:44:52Z) - Do Noises Bother Human and Neural Networks In the Same Way? A Medical
Image Analysis Perspective [20.40395704320726]
We introduce an application-guided denoising framework, which focuses on denoising for the following neural networks.
Experimental results show that our proposed framework can achieve a better result than human-vision denoising network.
arXiv Detail & Related papers (2020-11-04T06:58:09Z) - Improving Blind Spot Denoising for Microscopy [73.94017852757413]
We present a novel way to improve the quality of self-supervised denoising.
We assume the clean image to be the result of a convolution with a point spread function (PSF) and explicitly include this operation at the end of our neural network.
arXiv Detail & Related papers (2020-08-19T13:06:24Z) - Dual Adversarial Network: Toward Real-world Noise Removal and Noise
Generation [52.75909685172843]
Real-world image noise removal is a long-standing yet very challenging task in computer vision.
We propose a novel unified framework to deal with the noise removal and noise generation tasks.
Our method learns the joint distribution of the clean-noisy image pairs.
arXiv Detail & Related papers (2020-07-12T09:16:06Z) - A CNN-Based Blind Denoising Method for Endoscopic Images [19.373025463383385]
Many low-quality endoscopic images exist due to limited illumination and complex environment in GI tract.
This paper proposes a convolutional blind denoising network for endoscopic images.
arXiv Detail & Related papers (2020-03-16T03:11:11Z) - Deep Learning on Image Denoising: An overview [92.07378559622889]
We offer a comparative study of deep techniques in image denoising.
We first classify the deep convolutional neural networks (CNNs) for additive white noisy images.
Next, we compare the state-of-the-art methods on public denoising datasets in terms of quantitative and qualitative analysis.
arXiv Detail & Related papers (2019-12-31T05:03:57Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
Blind image denoising is an important yet very challenging problem in computer vision.
We propose a new variational inference method, which integrates both noise estimation and image denoising.
arXiv Detail & Related papers (2019-08-29T15:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.