Unimib Assistant: designing a student-friendly RAG-based chatbot for all their needs
- URL: http://arxiv.org/abs/2411.19554v1
- Date: Fri, 29 Nov 2024 09:07:21 GMT
- Title: Unimib Assistant: designing a student-friendly RAG-based chatbot for all their needs
- Authors: Chiara Antico, Stefano Giordano, Cansu Koyuturk, Dimitri Ognibene,
- Abstract summary: This pilot study focuses on specializing ChatGPT behavior through a Retrieval-Augmented Generation (RAG) system using the OpenAI custom GPTs feature.
We created a Unimib Assistant to provide information and solutions to the specific needs of University of Milano-Bicocca (Unimib) students.
The satisfaction and overall experience of the users was impaired by the system's inability to always provide fully accurate information.
- Score: 1.0805849839756092
- License:
- Abstract: Natural language processing skills of Large Language Models (LLMs) are unprecedented, having wide diffusion and application in different tasks. This pilot study focuses on specializing ChatGPT behavior through a Retrieval-Augmented Generation (RAG) system using the OpenAI custom GPTs feature. The purpose of our chatbot, called Unimib Assistant, is to provide information and solutions to the specific needs of University of Milano-Bicocca (Unimib) students through a question-answering approach. We provided the system with a prompt highlighting its specific purpose and behavior, as well as university-related documents and links obtained from an initial need-finding phase, interviewing six students. After a preliminary customization phase, a qualitative usability test was conducted with six other students to identify the strengths and weaknesses of the chatbot, with the goal of improving it in a subsequent redesign phase. While the chatbot was appreciated for its user-friendly experience, perceived general reliability, well-structured responses, and conversational tone, several significant technical and functional limitations emerged. In particular, the satisfaction and overall experience of the users was impaired by the system's inability to always provide fully accurate information. Moreover, it would often neglect to report relevant information even if present in the materials uploaded and prompt given. Furthermore, it sometimes generated unclickable links, undermining its trustworthiness, since providing the source of information was an important aspect for our users. Further in-depth studies and feedback from other users as well as implementation iterations are planned to refine our Unimib Assistant.
Related papers
- Memento No More: Coaching AI Agents to Master Multiple Tasks via Hints Internalization [56.674356045200696]
We propose a novel method to train AI agents to incorporate knowledge and skills for multiple tasks without the need for cumbersome note systems or prior high-quality demonstration data.
Our approach employs an iterative process where the agent collects new experiences, receives corrective feedback from humans in the form of hints, and integrates this feedback into its weights.
We demonstrate the efficacy of our approach by implementing it in a Llama-3-based agent which, after only a few rounds of feedback, outperforms advanced models GPT-4o and DeepSeek-V3 in a taskset.
arXiv Detail & Related papers (2025-02-03T17:45:46Z) - Comparing the Utility, Preference, and Performance of Course Material Search Functionality and Retrieval-Augmented Generation Large Language Model (RAG-LLM) AI Chatbots in Information-Seeking Tasks [2.377308748205625]
The purpose of this study was to explore the utility of recent large language models (LLMs) as a support mechanism for students.
We conducted a lab-based user study in which participants worked on tasks from a web software development course.
Our findings highlight that both support mechanisms are seen as useful and that support mechanisms work well for specific tasks, while less so for other tasks.
arXiv Detail & Related papers (2024-10-17T08:37:25Z) - Improving Ontology Requirements Engineering with OntoChat and Participatory Prompting [3.3241053483599563]
ORE has primarily relied on manual methods, such as interviews and collaborative forums, to gather user requirements from domain experts.
Current OntoChat offers a framework for ORE that utilise large language models (LLMs) to streamline the process.
This study produces pre-defined prompt templates based on user queries, focusing on creating and refining personas, goals, scenarios, sample data, and data resources for user stories.
arXiv Detail & Related papers (2024-08-09T19:21:14Z) - ChatGPT in Data Visualization Education: A Student Perspective [19.58123915686711]
This work explores the impact of such technology on student learning in an interdisciplinary, project-oriented data visualization course.
Students engaged with ChatGPT across four distinct projects, designing and implementing data visualizations using a variety of tools such as Tableau, D3, and Vega-lite.
Our analysis examined the advantages and barriers of using ChatGPT, students' querying behavior, the types of assistance sought, and its impact on assignment outcomes and engagement.
arXiv Detail & Related papers (2024-05-01T02:40:20Z) - UltraFeedback: Boosting Language Models with Scaled AI Feedback [99.4633351133207]
We present textscUltraFeedback, a large-scale, high-quality, and diversified AI feedback dataset.
Our work validates the effectiveness of scaled AI feedback data in constructing strong open-source chat language models.
arXiv Detail & Related papers (2023-10-02T17:40:01Z) - Automated Distractor and Feedback Generation for Math Multiple-choice
Questions via In-context Learning [43.83422798569986]
Multiple-choice questions (MCQs) are ubiquitous in almost all levels of education since they are easy to administer, grade, and reliable form of assessment.
To date, the task of crafting high-quality distractors has largely remained a labor-intensive process for teachers and learning content designers.
We propose a simple, in-context learning-based solution for automated distractor and corresponding feedback message generation.
arXiv Detail & Related papers (2023-08-07T01:03:04Z) - Covering Uncommon Ground: Gap-Focused Question Generation for Answer
Assessment [75.59538732476346]
We focus on the problem of generating such gap-focused questions (GFQs) automatically.
We define the task, highlight key desired aspects of a good GFQ, and propose a model that satisfies these.
arXiv Detail & Related papers (2023-07-06T22:21:42Z) - On the Educational Impact of ChatGPT: Is Artificial Intelligence Ready
to Obtain a University Degree? [0.0]
We evaluate the influence of ChatGPT on university education.
We discuss how computer science higher education should adapt to tools like ChatGPT.
arXiv Detail & Related papers (2023-03-20T14:27:37Z) - ProtoTransformer: A Meta-Learning Approach to Providing Student Feedback [54.142719510638614]
In this paper, we frame the problem of providing feedback as few-shot classification.
A meta-learner adapts to give feedback to student code on a new programming question from just a few examples by instructors.
Our approach was successfully deployed to deliver feedback to 16,000 student exam-solutions in a programming course offered by a tier 1 university.
arXiv Detail & Related papers (2021-07-23T22:41:28Z) - Mining Implicit Relevance Feedback from User Behavior for Web Question
Answering [92.45607094299181]
We make the first study to explore the correlation between user behavior and passage relevance.
Our approach significantly improves the accuracy of passage ranking without extra human labeled data.
In practice, this work has proved effective to substantially reduce the human labeling cost for the QA service in a global commercial search engine.
arXiv Detail & Related papers (2020-06-13T07:02:08Z) - IART: Intent-aware Response Ranking with Transformers in
Information-seeking Conversation Systems [80.0781718687327]
We analyze user intent patterns in information-seeking conversations and propose an intent-aware neural response ranking model "IART"
IART is built on top of the integration of user intent modeling and language representation learning with the Transformer architecture.
arXiv Detail & Related papers (2020-02-03T05:59:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.