Comparing the Utility, Preference, and Performance of Course Material Search Functionality and Retrieval-Augmented Generation Large Language Model (RAG-LLM) AI Chatbots in Information-Seeking Tasks
- URL: http://arxiv.org/abs/2410.13326v1
- Date: Thu, 17 Oct 2024 08:37:25 GMT
- Title: Comparing the Utility, Preference, and Performance of Course Material Search Functionality and Retrieval-Augmented Generation Large Language Model (RAG-LLM) AI Chatbots in Information-Seeking Tasks
- Authors: Leonardo Pasquarelli, Charles Koutcheme, Arto Hellas,
- Abstract summary: The purpose of this study was to explore the utility of recent large language models (LLMs) as a support mechanism for students.
We conducted a lab-based user study in which participants worked on tasks from a web software development course.
Our findings highlight that both support mechanisms are seen as useful and that support mechanisms work well for specific tasks, while less so for other tasks.
- Score: 2.377308748205625
- License:
- Abstract: Providing sufficient support for students requires substantial resources, especially considering the growing enrollment numbers. Students need help in a variety of tasks, ranging from information-seeking to requiring support with course assignments. To explore the utility of recent large language models (LLMs) as a support mechanism, we developed an LLM-powered AI chatbot that augments the answers that are produced with information from the course materials. To study the effect of the LLM-powered AI chatbot, we conducted a lab-based user study (N=14), in which the participants worked on tasks from a web software development course. The participants were divided into two groups, where one of the groups first had access to the chatbot and then to a more traditional search functionality, while another group started with the search functionality and was then given the chatbot. We assessed the participants' performance and perceptions towards the chatbot and the search functionality and explored their preferences towards the support functionalities. Our findings highlight that both support mechanisms are seen as useful and that support mechanisms work well for specific tasks, while less so for other tasks. We also observe that students tended to prefer the second support mechanism more, where students who were first given the chatbot tended to prefer the search functionality and vice versa.
Related papers
- Improving Ontology Requirements Engineering with OntoChat and Participatory Prompting [3.3241053483599563]
ORE has primarily relied on manual methods, such as interviews and collaborative forums, to gather user requirements from domain experts.
Current OntoChat offers a framework for ORE that utilise large language models (LLMs) to streamline the process.
This study produces pre-defined prompt templates based on user queries, focusing on creating and refining personas, goals, scenarios, sample data, and data resources for user stories.
arXiv Detail & Related papers (2024-08-09T19:21:14Z) - Tool Learning with Large Language Models: A Survey [60.733557487886635]
Tool learning with large language models (LLMs) has emerged as a promising paradigm for augmenting the capabilities of LLMs to tackle highly complex problems.
Despite growing attention and rapid advancements in this field, the existing literature remains fragmented and lacks systematic organization.
arXiv Detail & Related papers (2024-05-28T08:01:26Z) - Ruffle&Riley: Insights from Designing and Evaluating a Large Language Model-Based Conversational Tutoring System [21.139850269835858]
Conversational tutoring systems (CTSs) offer learning experiences through interactions based on natural language.
We discuss and evaluate a novel type of CTS that leverages recent advances in large language models (LLMs) in two ways.
The system enables AI-assisted content authoring by inducing an easily editable tutoring script automatically from a lesson text.
arXiv Detail & Related papers (2024-04-26T14:57:55Z) - Large language model-powered chatbots for internationalizing student support in higher education [0.0]
This research explores the integration of GPT-3.5 and GPT-4 Turbo into higher education to enhance internationalization and leverage digital transformation.
It delves into the design, implementation, and application of Large Language Models (LLMs) for improving student engagement, information access, and support.
arXiv Detail & Related papers (2024-03-16T23:50:19Z) - Multi-Purpose NLP Chatbot : Design, Methodology & Conclusion [0.0]
This research paper provides a thorough analysis of the chatbots technology environment as it exists today.
It provides a very flexible system that makes use of reinforcement learning strategies to improve user interactions and conversational experiences.
The complexity of chatbots technology development is also explored in this study, along with the causes that have propelled these developments and their far-reaching effects on a range of sectors.
arXiv Detail & Related papers (2023-10-13T09:47:24Z) - AI Chatbots as Multi-Role Pedagogical Agents: Transforming Engagement in
CS Education [8.898863361318817]
We develop, implement, and evaluate a novel learning environment enriched with four distinct chatbots.
These roles cater to the three innate psychological needs of learners - competence, autonomy, and relatedness.
The system embraces an inquiry-based learning paradigm, encouraging students to ask questions, seek solutions, and explore their curiosities.
arXiv Detail & Related papers (2023-08-08T02:13:44Z) - Learning Action-Effect Dynamics for Hypothetical Vision-Language
Reasoning Task [50.72283841720014]
We propose a novel learning strategy that can improve reasoning about the effects of actions.
We demonstrate the effectiveness of our proposed approach and discuss its advantages over previous baselines in terms of performance, data efficiency, and generalization capability.
arXiv Detail & Related papers (2022-12-07T05:41:58Z) - Deep Active Learning for Computer Vision: Past and Future [50.19394935978135]
Despite its indispensable role for developing AI models, research on active learning is not as intensive as other research directions.
By addressing data automation challenges and coping with automated machine learning systems, active learning will facilitate democratization of AI technologies.
arXiv Detail & Related papers (2022-11-27T13:07:14Z) - Achieving Human Parity on Visual Question Answering [67.22500027651509]
The Visual Question Answering (VQA) task utilizes both visual image and language analysis to answer a textual question with respect to an image.
This paper describes our recent research of AliceMind-MMU that obtains similar or even slightly better results than human beings does on VQA.
This is achieved by systematically improving the VQA pipeline including: (1) pre-training with comprehensive visual and textual feature representation; (2) effective cross-modal interaction with learning to attend; and (3) A novel knowledge mining framework with specialized expert modules for the complex VQA task.
arXiv Detail & Related papers (2021-11-17T04:25:11Z) - Few-Shot Bot: Prompt-Based Learning for Dialogue Systems [58.27337673451943]
Learning to converse using only a few examples is a great challenge in conversational AI.
The current best conversational models are either good chit-chatters (e.g., BlenderBot) or goal-oriented systems (e.g., MinTL)
We propose prompt-based few-shot learning which does not require gradient-based fine-tuning but instead uses a few examples as the only source of learning.
arXiv Detail & Related papers (2021-10-15T14:36:45Z) - Conversations with Search Engines: SERP-based Conversational Response
Generation [77.1381159789032]
We create a suitable dataset, the Search as a Conversation (SaaC) dataset, for the development of pipelines for conversations with search engines.
We also develop a state-of-the-art pipeline for conversations with search engines, the Conversations with Search Engines (CaSE) using this dataset.
CaSE enhances the state-of-the-art by introducing a supporting token identification module and aprior-aware pointer generator.
arXiv Detail & Related papers (2020-04-29T13:07:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.