GREAT: Geometry-Intention Collaborative Inference for Open-Vocabulary 3D Object Affordance Grounding
- URL: http://arxiv.org/abs/2411.19626v2
- Date: Sat, 29 Mar 2025 03:46:58 GMT
- Title: GREAT: Geometry-Intention Collaborative Inference for Open-Vocabulary 3D Object Affordance Grounding
- Authors: Yawen Shao, Wei Zhai, Yuhang Yang, Hongchen Luo, Yang Cao, Zheng-Jun Zha,
- Abstract summary: Open-Vocabulary 3D object affordance grounding aims to anticipate action possibilities'' regions on 3D objects with arbitrary instructions.<n>We propose GREAT (GeometRy-intEntion collAboraTive inference) for Open-Vocabulary 3D Object Affordance Grounding.
- Score: 53.42728468191711
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Open-Vocabulary 3D object affordance grounding aims to anticipate ``action possibilities'' regions on 3D objects with arbitrary instructions, which is crucial for robots to generically perceive real scenarios and respond to operational changes. Existing methods focus on combining images or languages that depict interactions with 3D geometries to introduce external interaction priors. However, they are still vulnerable to a limited semantic space by failing to leverage implied invariant geometries and potential interaction intentions. Normally, humans address complex tasks through multi-step reasoning and respond to diverse situations by leveraging associative and analogical thinking. In light of this, we propose GREAT (GeometRy-intEntion collAboraTive inference) for Open-Vocabulary 3D Object Affordance Grounding, a novel framework that mines the object invariant geometry attributes and performs analogically reason in potential interaction scenarios to form affordance knowledge, fully combining the knowledge with both geometries and visual contents to ground 3D object affordance. Besides, we introduce the Point Image Affordance Dataset v2 (PIADv2), the largest 3D object affordance dataset at present to support the task. Extensive experiments demonstrate the effectiveness and superiority of GREAT. The code and dataset are available at https://yawen-shao.github.io/GREAT/.
Related papers
- IAAO: Interactive Affordance Learning for Articulated Objects in 3D Environments [56.85804719947]
We present IAAO, a framework that builds an explicit 3D model for intelligent agents to gain understanding of articulated objects in their environment through interaction.
We first build hierarchical features and label fields for each object state using 3D Gaussian Splatting (3DGS) by distilling mask features and view-consistent labels from multi-view images.
We then perform object- and part-level queries on the 3D Gaussian primitives to identify static and articulated elements, estimating global transformations and local articulation parameters along with affordances.
arXiv Detail & Related papers (2025-04-09T12:36:48Z) - AugRefer: Advancing 3D Visual Grounding via Cross-Modal Augmentation and Spatial Relation-based Referring [49.78120051062641]
3D visual grounding aims to correlate a natural language description with the target object within a 3D scene.
Existing approaches commonly encounter a shortage of text3D pairs available for training.
We propose AugRefer, a novel approach for advancing 3D visual grounding.
arXiv Detail & Related papers (2025-01-16T09:57:40Z) - Structured Spatial Reasoning with Open Vocabulary Object Detectors [2.089191490381739]
Reasoning about spatial relationships between objects is essential for many real-world robotic tasks.
We introduce a structured probabilistic approach that integrates rich 3D geometric features with state-of-the-art open-vocabulary object detectors.
The approach is evaluated and compared against zero-shot performance of the state-of-the-art Vision and Language Models (VLMs) on spatial reasoning tasks.
arXiv Detail & Related papers (2024-10-09T19:37:01Z) - Grounding 3D Scene Affordance From Egocentric Interactions [52.5827242925951]
Grounding 3D scene affordance aims to locate interactive regions in 3D environments.
We introduce a novel task: grounding 3D scene affordance from egocentric interactions.
arXiv Detail & Related papers (2024-09-29T10:46:19Z) - Learning 2D Invariant Affordance Knowledge for 3D Affordance Grounding [12.347557379925039]
We introduce the textbfMulti-textbfImage Guided Invariant-textbfFeature-Aware 3D textbfAffordance textbfGrounding framework.
It grounds 3D object affordance regions by identifying common interaction patterns across multiple human-object interaction images.
arXiv Detail & Related papers (2024-08-23T12:27:33Z) - 3DRP-Net: 3D Relative Position-aware Network for 3D Visual Grounding [58.924180772480504]
3D visual grounding aims to localize the target object in a 3D point cloud by a free-form language description.
We propose a relation-aware one-stage framework, named 3D Relative Position-aware Network (3-Net)
arXiv Detail & Related papers (2023-07-25T09:33:25Z) - Grounding 3D Object Affordance from 2D Interactions in Images [128.6316708679246]
Grounding 3D object affordance seeks to locate objects' ''action possibilities'' regions in the 3D space.
Humans possess the ability to perceive object affordances in the physical world through demonstration images or videos.
We devise an Interaction-driven 3D Affordance Grounding Network (IAG), which aligns the region feature of objects from different sources.
arXiv Detail & Related papers (2023-03-18T15:37:35Z) - Learning Geometry-Guided Depth via Projective Modeling for Monocular 3D Object Detection [70.71934539556916]
We learn geometry-guided depth estimation with projective modeling to advance monocular 3D object detection.
Specifically, a principled geometry formula with projective modeling of 2D and 3D depth predictions in the monocular 3D object detection network is devised.
Our method remarkably improves the detection performance of the state-of-the-art monocular-based method without extra data by 2.80% on the moderate test setting.
arXiv Detail & Related papers (2021-07-29T12:30:39Z) - VAT-Mart: Learning Visual Action Trajectory Proposals for Manipulating
3D ARTiculated Objects [19.296344218177534]
The space of 3D articulated objects is exceptionally rich in their myriad semantic categories, diverse shape geometry, and complicated part functionality.
Previous works mostly abstract kinematic structure with estimated joint parameters and part poses as the visual representations for manipulating 3D articulated objects.
We propose object-centric actionable visual priors as a novel perception-interaction handshaking point that the perception system outputs more actionable guidance than kinematic structure estimation.
arXiv Detail & Related papers (2021-06-28T07:47:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.